scholarly journals On the 486-Vertex Distance-Regular Graphs of Koolen-Riebeek and Soicher

10.37236/8954 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Robert F. Bailey ◽  
Daniel R. Hawtin

This paper considers three imprimitive distance-regular graphs with $486$ vertices and diameter $4$: the Koolen--Riebeek graph (which is bipartite), the Soicher graph (which is antipodal), and the incidence graph of a symmetric transversal design obtained from the affine geometry $\mathrm{AG}(5,3)$ (which is both). It is shown that each of these is preserved by the same rank-$9$ action of the group $3^5:(2\times M_{10})$, and the connection is explained using the ternary Golay code.


1999 ◽  
Vol 197-198 (1-3) ◽  
pp. 205-216 ◽  
Author(s):  
B Curtin


2020 ◽  
Vol 101 (3) ◽  
pp. 218-220
Author(s):  
A. A. Makhnev




1979 ◽  
Vol 27 (3) ◽  
pp. 274-293 ◽  
Author(s):  
Eiichi Bannai ◽  
Tatsuro Ito






1993 ◽  
Vol 113 (1-3) ◽  
pp. 275-276
Author(s):  
E.W. Lambeck


2002 ◽  
Vol 6 (2) ◽  
pp. 209-228 ◽  
Author(s):  
Hendrik Van Maldeghem




Sign in / Sign up

Export Citation Format

Share Document