scholarly journals Expiry date recognition using deep neural networks

2020 ◽  
Vol 13 (1) ◽  
pp. 1-17
Author(s):  
Traian Rebedea ◽  
Vlad Florea

This paper proposes a deep learning solution for optical character recognition, specifically tuned to detect expiration dates that are printed on the packaging of food items. This method can be used to reduce food waste, having a significant impact on the design of smart refrigerators and can prove especially useful for persons with vision difficulties, by combining it with a speech synthesis engine. The main problem in designing an efficient solution for expiry date recognition is the lack of a large enough dataset to train deep neural networks. To tackle this issue, we propose to use an additional dataset composed of synthetically generated images. Both the synthetic and real image datasets are detailed in the paper and we show that the proposed method offers a 9.4% accuracy improvement over using real images alone.

2021 ◽  
pp. 894-911
Author(s):  
Bhavesh Kataria, Dr. Harikrishna B. Jethva

India's constitution has 22 languages written in 17 different scripts. These materials have a limited lifespan, and as generations pass, these materials deteriorate, and the vital knowledge is lost. This work uses digital texts to convey information to future generations. Optical Character Recognition (OCR) helps extract information from scanned manuscripts (printed text). This paper proposes a simple and effective solution of optical character recognition (OCR) Sanskrit Character from text document images using long short-term memory (LSTM) and neural networks of Sanskrit Characters. Existing methods focuses only upon the single touching characters. But our main focus is to design a robust method using Bidirectional Long Short-Term Memory (BLSTM) architecture for overlapping lines, touching characters in middle and upper zone and half character which would increase the accuracy of the present OCR system for recognition of poorly maintained Sanskrit literature.


In the proposed paper we introduce a new Pashtu numerals dataset having handwritten scanned images. We make the dataset publically available for scientific and research use. Pashtu language is used by more than fifty million people both for oral and written communication, but still no efforts are devoted to the Optical Character Recognition (OCR) system for Pashtu language. We introduce a new method for handwritten numerals recognition of Pashtu language through the deep learning based models. We use convolutional neural networks (CNNs) both for features extraction and classification tasks. We assess the performance of the proposed CNNs based model and obtained recognition accuracy of 91.45%.


Unsolicited visual data is undesirable in any form. The art of hiding malicious content in images and adding them as attachments to electronic mails has become a popular nuisance. In recent years, attackers have developed various new techniques to evade traditional spam classification systems. Text-based spam classification has been in focus for a long time and, researchers have successfully created a prodigal system for identifying spam text in electronic mails using Optical Character Recognition technology. In the last decade, extensive work has been performed to tackle image spam but with unsatisfactory results. Various algorithms and data augmentation techniques are used today to develop an optimal model for image spam recognition. Many of these proposed systems come close to the ideal system but do not provide 100 percent accuracy. This paper highlights the role of three popular techniques in image spam filtering. We discuss the importance and application of Optical Character Recognition, Support Vector Machines and, Artificial Neural Networks in unsolicited visual data filtering. This paper sheds light on the algorithms of these techniques. We provide a comparison of their accuracy, which helps us draw useful insights for developing a robust unsolicited visual data classification system. This paper aims to bring clarity regarding the feasibility of using these techniques to develop an unsolicited visual data filtering system. This paper records that the most favourable results are obtained using Artificial Neural Networks.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 65 ◽  
Author(s):  
S Thiyagarajan ◽  
Dr G.Saravana Kumar ◽  
E Praveen Kumar ◽  
G Sakana

Blind people are unable to perform visual tasks. The majority of published printed works does not include Braille or audio versions, and digital versions are still a minority. In this project, the technology of optical character recognition (OCR) enables the recognition of texts from image data. The system is constituted by the raspberry pi, HD camera and Bluetooth headset. This technology has been widely used in scanned or photographed documents, converting them into electronic copies. The technology of speech synthesis (TTS) enables a text in digital format to be synthesized into human voice and played through an audio system. The objective of the TTS is the automatic conversion of sentences, without restrictions, into spoken discourse in a natural language, resembling the spoken form of the same text, by a native speaker of the language.  


Sign in / Sign up

Export Citation Format

Share Document