Optical Coherence Tomography Based Biomechanical Fluid-Structure Interaction Analysis of Coronary Atherosclerosis Progression

Author(s):  
Harry J. Carpenter ◽  
Mergen H. Ghayesh ◽  
Anthony C. Zander ◽  
Juanita L. Ottaway ◽  
Giuseppe Di Giovanni ◽  
...  
2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Xiaoya Guo ◽  
Don P. Giddens ◽  
David Molony ◽  
Chun Yang ◽  
Habib Samady ◽  
...  

Accurate cap thickness and stress/strain quantifications are of fundamental importance for vulnerable plaque research. Virtual histology intravascular ultrasound (VH-IVUS) sets cap thickness to zero when cap is under resolution limit and IVUS does not see it. An innovative modeling approach combining IVUS and optical coherence tomography (OCT) is introduced for cap thickness quantification and more accurate cap stress/strain calculations. In vivo IVUS and OCT coronary plaque data were acquired with informed consent obtained. IVUS and OCT images were merged to form the IVUS + OCT data set, with biplane angiography providing three-dimensional (3D) vessel curvature. For components where VH-IVUS set zero cap thickness (i.e., no cap), a cap was added with minimum cap thickness set as 50 and 180 μm to generate IVUS50 and IVUS180 data sets for model construction, respectively. 3D fluid–structure interaction (FSI) models based on IVUS + OCT, IVUS50, and IVUS180 data sets were constructed to investigate cap thickness impact on stress/strain calculations. Compared to IVUS + OCT, IVUS50 underestimated mean cap thickness (27 slices) by 34.5%, overestimated mean cap stress by 45.8%, (96.4 versus 66.1 kPa). IVUS50 maximum cap stress was 59.2% higher than that from IVUS + OCT model (564.2 versus 354.5 kPa). Differences between IVUS and IVUS + OCT models for cap strain and flow shear stress (FSS) were modest (cap strain <12%; FSS <6%). IVUS + OCT data and models could provide more accurate cap thickness and stress/strain calculations which will serve as basis for further plaque investigations.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
S. Zhou-Bowers ◽  
D. C. Rizos

Reduced 3D dynamic fluid-structure interaction (FSI) models are proposed in this paper based on a direct time-domain B-spline boundary element method (BEM). These models are used to simulate the motion of rigid bodies in infinite or semi-infinite fluid media in real, or near real, time. B-spline impulse response function (BIRF) techniques are used within the BEM framework to compute the response of the hydrodynamic system to transient forces. Higher-order spatial and temporal discretization is used in developing the kinematic FSI model of rigid bodies and computing its BIRFs. Hydrodynamic effects on the massless rigid body generated by an arbitrary transient acceleration of the body are computed by a mere superposition of BIRFs. Finally, the dynamic models of rigid bodies including inertia effects are generated by introducing the kinematic interaction model to the governing equation of motion and solve for the response in a time-marching scheme. Verification examples are presented and demonstrate the stability, accuracy, and efficiency of the proposed technique.


Sign in / Sign up

Export Citation Format

Share Document