sinusoidal temperature
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 18)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Supen Kumar Sah ◽  
Anup Ghosh

PurposeThe purpose of this article is to carry out the thermal buckling analysis of power and sigmoid functionally graded material Sandwich plate (P-FGM and S-FGM) under uniform, linear, nonlinear and sinusoidal temperature rise.Design/methodology/approachThermal buckling of FGM Sandwich plates namely, FGM face with ceramic core (Type-A) and homogeneous face layers with FGM core (Type-B), incorporated with nonpolynomial shear deformation theories are considered for an analytical solution in this investigation. Effective material properties and thermal expansion coefficients of FGM Sandwich plates are evaluated based on Voigt's micromechanical model considering power and sigmoid law. The governing equilibrium and stability equations for the thermal buckling analysis are derived based on sinusoidal shear deformation theory (SSDT) and inverse trigonometric shear deformation theory (ITSDT) along with Von Karman nonlinearity. Analytical solutions for thermal buckling are carried out using the principle of minimum potential energy and Navier's solution technique.FindingsCritical buckling temperature of P-FGM and S-FGM Sandwich plates Type-A and B under uniform, linear, non-linear, and sinusoidal temperature rise are obtained and analyzed based on SSDT and ITSDT. Influence of power law, sigmoid law, span to thickness ratio, aspect ratio, volume fraction index, different types of thermal loadings and Sandwich plate types over critical buckling temperature are investigated. An analytical method of solution for thermal buckling of power and sigmoid FGM Sandwich plates with efficient shear deformation theories has been successfully analyzed and validated.Originality/valueThe temperature distribution across FGM plate under a high thermal environment may be uniform, linear, nonlinear, etc. In practice, temperature variation is an unpredictable phenomenon; therefore, it is essential to have a temperature distribution model which can address a sinusoidal temperature variation too. In the present work, a new sinusoidal temperature rise is proposed to describe the effect of sinusoidal temperature variation over critical buckling temperature for P-FGM and S-FGM Sandwich plates. For the first time, the FGM Sandwich plate is modeled using the sigmoid function to investigate the thermal buckling behavior under the uniform, linear, nonlinear and sinusoidal temperature rise. Nonpolynomial shear deformation theories are utilized to obtain the equilibrium and stability equations for thermal buckling analysis of P-FGM and S-FGM Sandwich plates.


2021 ◽  
pp. 089270572110386
Author(s):  
Le Thi Nhu Trang ◽  
Hoang Van Tung

In order to fill the evident lack of investigations on nonlinear response of nanocomposite curved panels under nonuniform temperature, this paper aims to analyze the nonlinear thermoelastic stability of cylindrical panels made of carbon nanotube (CNT) reinforced composite, rested on elastic foundations and subjected to sinusoidal-type in-plane temperature distribution. Reinforcement is carried out through functional rules of CNT volume fraction. An extended rule of mixture is adopted to estimate the effective properties of CNT-reinforced composite. Governing equations are derived based on classical shell theory accounting for von Kármán–Donnell nonlinearity, initial imperfection, interactive pressure from elastic foundation, and preexisting lateral pressure. In addition, the elasticity of in-plane constraints of boundary edges is included. Approximate analytical solutions are assumed to satisfy simply supported boundary conditions and Galerkin procedure is adopted to derive nonlinear closed-form relation between thermal load and deflection. Parametric studies are carried out and interesting remarks are obtained. The present study finds that, unlike case of uniform temperature rise, thermal instability of cylindrical panels under sinusoidal temperature distribution still occurs even though all edges are movable and load carrying capacity is the weakest for an intermediate value of CNT volume fraction. Under sinusoidal temperature distribution, the cylindrical panel may be deflected at the onset of loading and, for the most part, has no longer bifurcation-type buckling response. Furthermore, small values of preexisting external pressure have beneficial influences on the stability of nanocomposite cylindrical panels under nonuniform thermal loads.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dalia Sabina Cimpean ◽  
Ioan Pop

Purpose This paper aims to focus on the analysis of the entropy generation in an inclined square cavity filled with a porous media saturated by a nanofluid with sinusoidal temperature distribution on the side walls, adiabatic conditions on the upper wall and a heat source at the lower wall. Design/methodology/approach The two-phase nanofluid model including the Brownian diffusion and thermophoresis effects has been used for simulation of nanofluid transport inside the porous cavity. The governing equations and the entropy generation owing to fluid friction, heat and mass transfer are transformed in terms of the dimensionless variables, and the results are obtained by using the finite difference method of the second-order accuracy. Findings The numerical results of the model are investigated, and the effect of different important parameters, such as inclination angle of the cavity, amplitude ratio of the sinusoidal temperature or phase deviation, is discussed. The results for no inclination of the cavity is compared and successfully validated with previous reported results of the literature. The important findings of the study are focused mainly on the existence of the irreversibility phenomena which are affected by the conditions of the model and the values of the studied parameters. Originality/value The originality of this work is given by the presented mathematical model, the numerical solution with new results for entropy generation in an inclined porous cavity filled by a nanofluid and the applications for design of electronic or energy devices.


2020 ◽  
Vol 117 ◽  
pp. 106769
Author(s):  
M. Sanchez-Amaya ◽  
M. Bárcena-Soto ◽  
A. Rodríguez-López ◽  
R. Antaño-López ◽  
E.R. Larios-Durán

2020 ◽  
Vol 330 ◽  
pp. 01042
Author(s):  
Nassim Mahfoud Sahraoui ◽  
Samir Houat ◽  
Mohamed El Ganaoui

In this work, a numerical study is carried out to investigate the effect of Rayleigh number on mixed convection in a horizontal channel heated from below by sinusoidal temperature profile and cooled from above. The multiple relaxation time double population thermal lattice Boltzmann method (MRT-TLBM) is used. A validation of our code is done by comparing our results with those found in the literature. Particle oscillation amplitude and temperature profile are plotted for Ra = 5 103, while the Reynolds number, the aspect ratio and Prandtl number are fixed at Re = 10, B=10, Pr = 0.667 respectively. The effect of Rayleigh number on the heat transfer is also discussed.


2019 ◽  
Vol 29 (12) ◽  
pp. 4549-4568 ◽  
Author(s):  
Dalia Sabina Cimpean ◽  
Ioan Pop

Purpose This paper aims to develop a numerical study of the steady natural convection in an inclined square porous cavity filled by a nanofluid with sinusoidal temperature distribution on the side walls and adiabatic conditions on the upper and lower walls. Design/methodology/approach Governing equations transformed in terms of the dimensionless variables using the Darcy–Boussinesq approximation have been solved numerically using a central finite-difference scheme. The Gaus-Siedel iteration technique was used for the system of discretized equations. The two-phase nanofluid model including the Brownian diffusion and thermophoresis effects has been considered for simulation of nanofluid transport inside the cavity. Findings The numerical results of streamlines, isotherms and isoconcentrations are investigated and the effect of different important parameters, such as inclination angle of the cavity, amplitude ratio of the sinusoidal temperature or phase deviation, is discussed. The results obtained for no inclination of the cavity are compared and successfully validated with previous reported results of the literature. The important findings of the study are focused on the changes made by the inclination angle and the periodic thermal boundary conditions, on the heat and fluid flow. Originality/value The originality of the present study is given by the mathematical model presented for an inclined cavity, the numerical solution with new results for inclined cavity and the applications for design of solar energy devices such as solar collectors in which the boundary conditions vary with time because of changes in weather conditions.


2019 ◽  
Vol 12 (6) ◽  
pp. 1757-1767
Author(s):  
J. Baliti ◽  
M. Hssikou ◽  
M. Alaoui ◽  
◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document