scholarly journals Exact solution of a certain semi-linear system of partial differential equations related toa migrating predation problem

1974 ◽  
Vol 50 (8) ◽  
pp. 623-627 ◽  
Author(s):  
Hidenori Hasimoto
Author(s):  
M. Kh. Beshtokov ◽  
M. Z. Khudalov

Recently, to describe various mathematical models of physical processes, fractional differential calculus has been widely used. In this regard, much attention is paid to partial differential equations of fractional order, which are a generalization of partial differential equations of integer order. In this case, various settings are possible.Loaded differential equations in the literature are called equations containing values of a solution or its derivatives on manifolds of lower dimension than the dimension of the definitional domain of the desired function. Currently, numerical methods for solving loaded partial differential equations of integer and fractional (porous media) orders are widely used, since analytical solving methods for solving are impossible.In the paper, we study the initial-boundary value problem for the loaded differential heat equation with a fractional Caputo derivative and conditions of the third kind. To solve the problem on the assumption that there is an exact solution in the class of sufficiently smooth functions by the method of energy inequalities, a priori estimates are obtained both in the differential and difference interpretations. The obtained inequalities mean the uniqueness of the solution and the continuous dependence of the solution on the input data of the problem. Due to the linearity of the problem under consideration, these inequalities allow us to state the convergence of the approximate solution to the exact solution at a rate equal to the approximation order of the difference scheme. An algorithm for the numerical solution of the problem is constructed.


2021 ◽  
Vol 20 ◽  
pp. 712-716
Author(s):  
Zainab Mohammed Alwan

In this survey, viewed integral transformation (IT) combined with Adomian decomposition method (ADM) as ZMA- transform (ZMAT) coupled with (ADM) in which said ZMA decomposition method has been utilized to solve nonlinear partial differential equations (NPDE's).This work is very useful for finding the exact solution of (NPDE's) and this result is more accurate obtained with compared the exact solution obtained in the literature.


2014 ◽  
Vol 6 (01) ◽  
pp. 107-119 ◽  
Author(s):  
D. B. Dhaigude ◽  
Gunvant A. Birajdar

AbstractIn this paper we find the solution of linear as well as nonlinear fractional partial differential equations using discrete Adomian decomposition method. Here we develop the discrete Adomian decomposition method to find the solution of fractional discrete diffusion equation, nonlinear fractional discrete Schrodinger equation, fractional discrete Ablowitz-Ladik equation and nonlinear fractional discrete Burger’s equation. The obtained solution is verified by comparison with exact solution whenα= 1.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Muhammad Nadeem ◽  
Shao-Wen Yao

Purpose This paper aims to suggest the approximate solution of time fractional heat-like and wave-like (TFH-L and W-L) equations with variable coefficients. The proposed scheme shows that the results are very close to the exact solution. Design/methodology/approach First with the help of some basic properties of fractional derivatives, a scheme that has the capability to solve fractional partial differential equations is constructed. Then, TFH-L and W-L equations with variable coefficients are solved by this scheme, which yields results very close to the exact solution. The derived results demonstrate that this scheme is very effective. Finally, the convergence of this method is discussed. Findings A traditional method is combined with the Laplace transform to construct this scheme. To decompose the nonlinear terms, this paper introduces the homotopy perturbation method with He’s polynomials and thus the solution is provided in the form of a series that converges to the exact solution very quickly. Originality/value The proposed approach is original and very effective because this approach is, to the authors’ knowledge, used for the first time very successfully to tackle the fractional partial differential equations, which are of great interest.


Sign in / Sign up

Export Citation Format

Share Document