scholarly journals Shift automorphism groups of von Neumann algebras

1974 ◽  
Vol 50 (7) ◽  
pp. 470-475 ◽  
Author(s):  
Marie Choda
2002 ◽  
Vol 13 (06) ◽  
pp. 579-603 ◽  
Author(s):  
UN KIT HUI

We classify, up to cocycle conjugacy, one-parameter automorphism groups on an approximately finite dimensional (AFD) factor ℳ of type III with trivial Connes spectrum. Our goal is to find the complete cocycle conjugacy invariants for one-parameter automorphism groups on ℳ. We also study the relations between the flow of weights of ℳ and that of the crossed product ℳ ⋊α ℝ of ℳ by a one-parameter automorphism group α with Γ(α) = {0}. Moreover, we also study model realizations. "Model realizations" means that given certain commutative data, they can be realized as the complete cocycle conjugacy invariants of centrally free and centrally ergodic one-parameter automorphism groups on some properly infinite AFD von Neumann algebras.


1987 ◽  
Vol 29 (2) ◽  
pp. 177-179 ◽  
Author(s):  
A. B. Thaheem

It is well known that if α and β are commuting *-automorphisms of a von Neumann algebra M satisfying the equation α + α-1 = β + β-1 then M can be decomposed into a direct sum of subalgebras Mp and M(l − p) by a central projection p in M such that α = β on Mp and α = β-1 on M(1 − p) (see, for instance, [6], [7], [2]). Originally this equation arose in the Tomita-Takesaki theory (see, for example, [11]) in the form of one-parameter modular automorphism groups and later on it has been studied for arbitrary automorphisms and one-parameter groups of automorphisms on von Neumann algebras [7], [8], [9]. In the case of automorphism groups satisfying the above equation, one has a similar decomposition but this time without assuming the commutativity condition (cf. [7], [8]). For another relevant work on one-parameter groups of automorphisms which is close to our papers [7] and [8], we refer to Ciorănescu and Zsidó [1]. Regarding applications, this equation has been used for arbitrary automorphisms in the geometric interpretation of the Tomita-Takesaki theory [2] and in the case of automorphism groups it has been a fundamental tool in the generalization of the Tomita-Takesaki theory to Jordan algebras [3]. We may remark that the decomposition in the commuting case [6], [7] is much simpler than in the case of automorphism groups in the non-commutative situation [8]. In some cases one can obtain the decomposition for an arbitrary pair of automorphisms without assuming their commutativity but the problem in the general case has been unresolved. Recently we have shown that if α and β are *-automorphisms of a von Neumann algebra M satisfying the equation α + α-1 = β + β-1 (without assuming the commutativity of α and β) then there exists a central projection p in M such that α2= β2 on Mp and α2 = β−2 on M(l − p) [10].


2002 ◽  
Vol 13 (01) ◽  
pp. 31-41 ◽  
Author(s):  
JAESEONG HEO

In this paper, we answer the Dixmier's question for type II 1-factors with property T in the negative, that is, if G is a discrete i.c.c group with property T of Kazhdan, L(G) is not isomorphic to [Formula: see text] for any factor [Formula: see text] of type II 1. To prove this, we study outer automorphism groups on a free product of two finite von Neumann algebras with respect to tracial states.


Sign in / Sign up

Export Citation Format

Share Document