COCYCLE CONJUGACY OF ONE PARAMETER AUTOMORPHISM GROUPS OF AFD FACTORS OF TYPE III

2002 ◽  
Vol 13 (06) ◽  
pp. 579-603 ◽  
Author(s):  
UN KIT HUI

We classify, up to cocycle conjugacy, one-parameter automorphism groups on an approximately finite dimensional (AFD) factor ℳ of type III with trivial Connes spectrum. Our goal is to find the complete cocycle conjugacy invariants for one-parameter automorphism groups on ℳ. We also study the relations between the flow of weights of ℳ and that of the crossed product ℳ ⋊α ℝ of ℳ by a one-parameter automorphism group α with Γ(α) = {0}. Moreover, we also study model realizations. "Model realizations" means that given certain commutative data, they can be realized as the complete cocycle conjugacy invariants of centrally free and centrally ergodic one-parameter automorphism groups on some properly infinite AFD von Neumann algebras.

Author(s):  
Yusuke Isono

AbstractWe prove some unique factorization results for tensor products of free quantum group factors. They are type III analogues of factorization results for direct products of bi-exact groups established by Ozawa and Popa. In the proof, we first take continuous cores of the tensor products, which satisfy a condition similar to condition (AO), and discuss some factorization properties for the continuous cores. We then deduce factorization properties for the original type III factors. We also prove some unique factorization results for crossed product von Neumann algebras by direct products of bi-exact groups.


2015 ◽  
Vol 26 (07) ◽  
pp. 1550044
Author(s):  
Koichi Shimada

We classify actions of discrete abelian groups on some inclusions of von Neumann algebras, up to cocycle conjugacy. As an application, we classify actions of compact abelian groups on the inclusions of approximately finite dimensional (AFD) factors of type II1 with index less than 4, up to stable conjugacy.


1969 ◽  
Vol 21 ◽  
pp. 1293-1308 ◽  
Author(s):  
Wai-Mee Ching

A von Neumann algebra is called hyperfinite if it is the weak closure of an increasing sequence of finite-dimensional von Neumann subalgebras. For a separable infinite-dimensional Hilbert space the following is known: there exist hyperfinite and non-hyperfinite factors of type II1 (4, Theorem 16’), and of type III (8, Theorem 1); all hyperfinite factors of type Hi are isomorphic (4, Theorem 14); there exist uncountably many non-isomorphic hyperfinite factors of type III (7, Theorem 4.8); there exist two nonisomorphic non-hyperfinite factors of type II1 (10), and of type III (11). In this paper we will show that on a separable infinite-dimensional Hilbert space there exist three non-isomorphic non-hyperfinite factors of type II1 (Theorem 2), and of type III (Theorem 3).Section 1 contains an exposition of crossed product, which is developed mainly for the construction of factors of type III in § 3.


Author(s):  
Ivan Bardet ◽  
Ángela Capel ◽  
Cambyse Rouzé

AbstractIn this paper, we derive a new generalisation of the strong subadditivity of the entropy to the setting of general conditional expectations onto arbitrary finite-dimensional von Neumann algebras. This generalisation, referred to as approximate tensorization of the relative entropy, consists in a lower bound for the sum of relative entropies between a given density and its respective projections onto two intersecting von Neumann algebras in terms of the relative entropy between the same density and its projection onto an algebra in the intersection, up to multiplicative and additive constants. In particular, our inequality reduces to the so-called quasi-factorization of the entropy for commuting algebras, which is a key step in modern proofs of the logarithmic Sobolev inequality for classical lattice spin systems. We also provide estimates on the constants in terms of conditions of clustering of correlations in the setting of quantum lattice spin systems. Along the way, we show the equivalence between conditional expectations arising from Petz recovery maps and those of general Davies semigroups.


Author(s):  
Klaus Thomsen

SynopsisWe consider automorphic actions on von Neumann algebras of a locally compact group E given as a topological extension 0 → A → E → G → 0, where A is compact abelian and second countable. Motivated by the wish to describe and classify ergodic actions of E when G is finite, we classify (up to conjugacy) first the ergodic actions of locally compact groups on finite-dimensional factors and then compact abelian actions with the property that the fixed-point algebra is of type I with atomic centre. We then handle the case of ergodic actions of E with the property that the action is already ergodic when restricted to A, and then, as a generalisation, the case of (not necessarily ergodic) actions of E with the property that the restriction to A is an action with abelian atomic fixed-point algebra. Both these cases are handled for general locally compact-countable G. Finally, we combine the obtained results to classify the ergodic actions of E when G is finite, provided that either the extension is central and Hom (G, T) = 0, or G is abelian and either cyclic or of an order not divisible by a square.


Sign in / Sign up

Export Citation Format

Share Document