scholarly journals On the unitary equivalence of normal operators in Hilbert spaces

1961 ◽  
Vol 37 (2) ◽  
pp. 93-98
Author(s):  
Sakuji Inoue
1971 ◽  
Vol 23 (5) ◽  
pp. 849-856 ◽  
Author(s):  
P. K. Tam

The following (so-called unitary equivalence) problem is of paramount importance in the theory of operators: given two (bounded linear) operators A1, A2 on a (complex) Hilbert space , determine whether or not they are unitarily equivalent, i.e., whether or not there is a unitary operator U on such that U*A1U = A2. For normal operators this question is completely answered by the classical multiplicity theory [7; 11]. Many authors, in particular, Brown [3], Pearcy [9], Deckard [5], Radjavi [10], and Arveson [1; 2], considered the problem for non-normal operators and have obtained various significant results. However, most of their results (cf. [13]) deal only with operators which are of type I in the following sense [12]: an operator, A, is of type I (respectively, II1, II∞, III) if the von Neumann algebra generated by A is of type I (respectively, II1, II∞, III).


1987 ◽  
Vol 39 (4) ◽  
pp. 880-892 ◽  
Author(s):  
Hari Bercovici

Kaplansky proposed in [7] three problems with which to test the adequacy of a proposed structure theory of infinite abelian groups. These problems can be rephrased as test problems for a structure theory of operators on Hilbert space. Thus, R. Kadison and I. Singer answered in [6] these test problems for the unitary equivalence of operators. We propose here a study of these problems for quasisimilarity of operators on Hilbert space. We recall first that two (bounded, linear) operators T and T′ acting on the Hilbert spaces and , are said to be quasisimilar if there exist bounded operators and with densely defined inverses, satisfying the relations T′X = XT and TY = YT′. The fact that T and T′ are quasisimilar is indicated by T ∼ T′. The problems mentioned above can now be formulated as follows.


1988 ◽  
Vol 30 (3) ◽  
pp. 339-345 ◽  
Author(s):  
Muneo Chō

The joint spectrum for a commuting n-tuple in functional analysis has its origin in functional calculus which appeared in J. L. Taylor's epoch-making paper [19] in 1970. Since then, many papers have been published on commuting n-tuples of operators on Hilbert spaces (for example, [3], [4], [5], [8], [9], [10], [21], [22]).


Sign in / Sign up

Export Citation Format

Share Document