scholarly journals Elliptic Hecke algebras and modified Cherednik algebras

2003 ◽  
Vol 79 (4) ◽  
pp. 80-84
Author(s):  
Tadayoshi Takebayashi
2022 ◽  
Vol 28 (2) ◽  
Author(s):  
C. Bowman ◽  
E. Norton ◽  
J. Simental

AbstractWe provide a homological construction of unitary simple modules of Cherednik and Hecke algebras of type A via BGG resolutions, solving a conjecture of Berkesch–Griffeth–Sam. We vastly generalize the conjecture and its solution to cyclotomic Cherednik and Hecke algebras over arbitrary ground fields, and calculate the Betti numbers and Castelnuovo–Mumford regularity of certain symmetric linear subspace arrangements.


Author(s):  
Ming Fang ◽  
Wei Hu ◽  
Steffen Koenig

AbstractGroup algebras of symmetric groups and their Hecke algebras are in Schur-Weyl duality with classical and quantised Schur algebras, respectively. Two homological dimensions, the dominant dimension and the global dimension, of the indecomposable summands (blocks) of these Schur algebras S(n, r) and $$S_q(n,r)$$ S q ( n , r ) with $$n \geqslant r$$ n ⩾ r are determined explicitly, using a result on derived invariance in Fang, Hu and Koenig (J Reine Angew Math 770:59–85, 2021).


2019 ◽  
Vol 155 (12) ◽  
pp. 2263-2295 ◽  
Author(s):  
Masaki Kashiwara ◽  
Myungho Kim

In this paper we study consequences of the results of Kang et al. [Monoidal categorification of cluster algebras, J. Amer. Math. Soc. 31 (2018), 349–426] on a monoidal categorification of the unipotent quantum coordinate ring $A_{q}(\mathfrak{n}(w))$ together with the Laurent phenomenon of cluster algebras. We show that if a simple module $S$ in the category ${\mathcal{C}}_{w}$ strongly commutes with all the cluster variables in a cluster $[\mathscr{C}]$, then $[S]$ is a cluster monomial in $[\mathscr{C}]$. If $S$ strongly commutes with cluster variables except for exactly one cluster variable $[M_{k}]$, then $[S]$ is either a cluster monomial in $[\mathscr{C}]$ or a cluster monomial in $\unicode[STIX]{x1D707}_{k}([\mathscr{C}])$. We give a new proof of the fact that the upper global basis is a common triangular basis (in the sense of Qin [Triangular bases in quantum cluster algebras and monoidal categorification conjectures, Duke Math. 166 (2017), 2337–2442]) of the localization $\widetilde{A}_{q}(\mathfrak{n}(w))$ of $A_{q}(\mathfrak{n}(w))$ at the frozen variables. A characterization on the commutativity of a simple module $S$ with cluster variables in a cluster $[\mathscr{C}]$ is given in terms of the denominator vector of $[S]$ with respect to the cluster $[\mathscr{C}]$.


2010 ◽  
Vol 197 ◽  
pp. 175-212
Author(s):  
Maria Chlouveraki

The Rouquier blocks of the cyclotomic Hecke algebras, introduced by Rouquier, are a substitute for the families of characters defined by Lusztig for Weyl groups, which can be applied to all complex reflection groups. In this article, we determine them for the cyclotomic Hecke algebras of the groups of the infinite seriesG(de, e, r), thus completing their calculation for all complex reflection groups.


Sign in / Sign up

Export Citation Format

Share Document