scholarly journals THE X-RAY LUMINOSITY FUNCTION OF M37 AND THE EVOLUTION OF CORONAL ACTIVITY IN LOW-MASS STARS

2016 ◽  
Vol 830 (1) ◽  
pp. 44 ◽  
Author(s):  
Alejandro Núñez ◽  
Marcel A. Agüeros
2003 ◽  
Vol 211 ◽  
pp. 447-450 ◽  
Author(s):  
Scott J. Wolk

I review recent observations of brown dwarfs by the Chandra X-ray Observatory. These observations fall in 2 categories, young stellar clusters which contain brown dwarfs and brown dwarf candidates and directed pointings at brown dwarfs and very low mass stars. Surprisingly, there are already over 60 published detections of brown dwarfs by Chandra. A review of the X–ray characteristics shows these objects are subject to flaring and their temperatures and luminosities have a vast range which is related to age.


1995 ◽  
Vol 450 ◽  
pp. 392 ◽  
Author(s):  
Juergen H. M. M. Schmitt ◽  
Thomas A. Fleming ◽  
Mark S. Giampapa

1982 ◽  
Vol 252 ◽  
pp. L69 ◽  
Author(s):  
R. G. Probst ◽  
R. W. Oconnell

2004 ◽  
Vol 194 ◽  
pp. 3-6
Author(s):  
Andrea H. Prestwich

AbstractChandra and XMM-Newton are revolutionizing our understanding of compact binaries in external galaxies, allowing us to study sources in detail in Local Group Galaxies and study populations in more distant systems. In M31 the X-ray luminosity function depends on the local stellar population in the sense that areas with active star formation have more high luminosity sources, and a higher overall source density (Kong. Di Stefano. Garcia, & Greiner 2003). This result is also true in galaxies outside the Local Group; starburst galaxies have flatter X-ray luminosity functions than do spiral galaxies which are in turn flatter than elliptical galaxies. These observational results suggest that the high end of the luminosity function in star forming regions is dominated by short-lived high mass X-ray binaries.In Chandra Cycle 2 we started a Large Project to survey a sample of 11 nearby (< 10Mpc) face-on spiral galaxies. We find that sources can be approximately classified on the basis of their X-ray color into low mass X-ray binaries, high mass X-ray binaries and supersoft sources. There is an especially interesting class of source that has X-ray colors softer (“redder”) than a typical low mass X-ray binary source, but not so extreme as supersoft sources. Most of these are probably X-ray bright supernova remnants, but some may be a new type of black hole accretor. Finally, when we construct a luminosity function of sources selecting only sources with low mass X-ray binary colors (removing soft sources) we find that there is a dip or break probably associated with the Eddington luminosity for a neutron star.


2011 ◽  
Vol 526 ◽  
pp. A94 ◽  
Author(s):  
M. Revnivtsev ◽  
K. Postnov ◽  
A. Kuranov ◽  
H. Ritter

2010 ◽  
Vol 9 (4) ◽  
pp. 239-243 ◽  
Author(s):  
P. Odert ◽  
M. Leitzinger ◽  
A. Hanslmeier ◽  
H. Lammer ◽  
M.L. Khodachenko ◽  
...  

AbstractStellar X-ray and extreme ultraviolet (XUV) radiation is an important driver of the escape of planetary atmospheres. Young stars emit high XUV fluxes that decrease as they age. Since the XUV emission of a young star can be orders of magnitude higher compared to an older one, this evolution has to be taken into account when studying the mass-loss history of a planet. The temporal decrease of activity is closely related to the operating magnetic dynamo, which depends on rotation and convection in Sun-like stars. Using a sample of nearby M dwarfs, we study the relations between age, rotation and activity and discuss the influence on planets orbiting these low-mass stars.


Sign in / Sign up

Export Citation Format

Share Document