solar neighborhood
Recently Published Documents


TOTAL DOCUMENTS

546
(FIVE YEARS 79)

H-INDEX

62
(FIVE YEARS 8)

2022 ◽  
Vol 163 (2) ◽  
pp. 44
Author(s):  
Bradley M. S. Hansen

Abstract We present a catalog of unbound stellar pairs, within 100 pc of the Sun, that are undergoing close, hyperbolic, encounters. The data are drawn from the GAIA EDR3 catalog, and the limiting factors are errors in the radial distance and unknown velocities along the line of sight. Such stellar pairs have been suggested to be possible events associated with the migration of technological civilizations between stars. As such, this sample may represent a finite set of targets for a SETI search based on this hypothesis. Our catalog contains a total of 132 close passage events, featuring stars from across the entire main sequence, with 16 pairs featuring at least one main-sequence star of spectral type between K1 and F3. Many of these stars are also in binaries, so that we isolate eight single stars as the most likely candidates to search for an ongoing migration event—HD 87978, HD 92577, HD 50669, HD 44006, HD 80790, LSPM J2126+5338, LSPM J0646+1829 and HD 192486. Among host stars of known planets, the stars GJ 433 and HR 858 are the best candidates.


Author(s):  
K. Vieira ◽  
V. Korchagin ◽  
A. Lutsenko

Using GAIA EDR3 catalog, we present the detailed analysis of the two-component Milky Way stellar disk in the solar neighborhood. To determine the kinematical properties of the thin and of the Thick disks, we select the complete sample of about 278,000 evolved red giant branch (RGB) stars distributed in the cylinder of 1 kpc radius and 0.5 kpc height centered at the Sun. We measured the following mean velocities and dispersions for the thin and the Thick disks, respectively: [Formula: see text][Formula: see text]km s[Formula: see text] with [Formula: see text][Formula: see text]km s[Formula: see text], and [Formula: see text][Formula: see text]km s[Formula: see text] with [Formula: see text][Formula: see text]km s[Formula: see text]. Errors in mean velocities and dispersions are all less than 1[Formula: see text]km s[Formula: see text]. Same values were computed on much smaller subsamples of our Gaia data with RAVE DR5 [Fe/H] values, from which a metallicity selection was added. Results are basically the same. We find that up to 500 pc height above/below the galactic plane, Thick disk stars comprise about half the stars of the disk. We also find evidence of a substructure in [Formula: see text] versus [Formula: see text] in the thick disk population mostly that would give support to the accretion scenario for the formation of the thick disk.


2021 ◽  
Vol 923 (2) ◽  
pp. 219
Author(s):  
Xilu Wang (王夕露) ◽  
Adam M. Clark ◽  
John Ellis ◽  
Adrienne F. Ertel ◽  
Brian D. Fields ◽  
...  

Abstract The astrophysical sites where r-process elements are synthesized remain mysterious: it is clear that neutron star mergers (kilonovae (KNe)) contribute, and some classes of core-collapse supernovae (SNe) are also possible sources of at least the lighter r-process species. The discovery of 60Fe on the Earth and Moon implies that one or more astrophysical explosions have occurred near the Earth within the last few million years, probably SNe. Intriguingly, 244Pu has now been detected, mostly overlapping with 60Fe pulses. However, the 244Pu flux may extend to before 12 Myr ago, pointing to a different origin. Motivated by these observations and difficulties for r-process nucleosynthesis in SN models, we propose that ejecta from a KN enriched the giant molecular cloud that gave rise to the Local Bubble, where the Sun resides. Accelerator mass spectrometry (AMS) measurements of 244Pu and searches for other live isotopes could probe the origins of the r-process and the history of the solar neighborhood, including triggers for mass extinctions, e.g., that at the end of the Devonian epoch, motivating the calculations of the abundances of live r-process radioisotopes produced in SNe and KNe that we present here. Given the presence of 244Pu, other r-process species such as 93Zr, 107Pd, 129I, 135Cs, 182Hf, 236U, 237Np, and 247Cm should be present. Their abundances and well-resolved time histories could distinguish between the SN and KN scenarios, and we discuss prospects for their detection in deep-ocean deposits and the lunar regolith. We show that AMS 129I measurements in Fe–Mn crusts already constrain a possible nearby KN scenario.


2021 ◽  
Vol 162 (6) ◽  
pp. 282
Author(s):  
Aidan McBride ◽  
Ryan Lingg ◽  
Marina Kounkel ◽  
Kevin Covey ◽  
Brian Hutchinson

Abstract A reliable census of pre-main-sequence stars with known ages is critical to our understanding of early stellar evolution, but historically there has been difficulty in separating such stars from the field. We present a trained neural network model, Sagitta, that relies on Gaia DR2 and 2 Micron All-Sky Survey photometry to identify pre-main-sequence stars and to derive their age estimates. Our model successfully recovers populations and stellar properties associated with known star-forming regions up to five kpc. Furthermore, it allows for a detailed look at the star-forming history of the solar neighborhood, particularly at age ranges to which we were not previously sensitive. In particular, we observe several bubbles in the distribution of stars, the most notable of which is a ring of stars associated with the Local Bubble, which may have common origins with Gould’s Belt.


2021 ◽  
Vol 922 (2) ◽  
pp. 106
Author(s):  
J. J. Bernal ◽  
C. D. Sephus ◽  
L. M. Ziurys

Abstract The Galactic Habitable Zone (GHZ) is a region believed hospitable for life. To further constrain the GHZ, observations have been conducted of the J = 2 → 1 transitions of methanol (CH3OH) at 97 GHz, toward 20 molecular clouds located in the outer Galaxy (R GC = 12.9–23.5 kpc), using the 12 m telescope of the Arizona Radio Observatory. Methanol was detected in 19 out of 20 observed clouds, including sources as far as R GC = 23.5 kpc. Identification was secured by the measurement of multiple asymmetry and torsional components in the J = 2 → 1 transition, which were resolved in the narrow line profiles observed (ΔV 1/2 ∼ 1–3 km s−1). From a radiative transfer analysis, column densities for these clouds of N tot = 0.1–1.5 × 1013 cm−2 were derived, corresponding to fractional abundances, relative to H2, of f (CH3OH) ∼ 0.2–4.9 × 10−9. The analysis also indicates that these clouds are cold (T K ∼ 10–25 K) and dense (n(H2) ∼ 106 cm−3), as found from previous H2CO observations. The methanol abundances in the outer Galaxy are comparable to those observed in colder molecular clouds in the solar neighborhood. The abundance of CH3OH therefore does not appear to decrease significantly with distances from the Galactic Center, even at R GC ∼ 20–23 kpc. Furthermore, the production of methanol is apparently not affected by the decline in metallicity with galactocentric distance. These observations suggest that organic chemistry is prevalent in the outer Galaxy, and methanol and other organic molecules may serve to assess the GHZ.


2021 ◽  
Vol 922 (2) ◽  
pp. 105
Author(s):  
Yong Yang ◽  
Jingkun Zhao ◽  
Jiajun Zhang ◽  
Xianhao Ye ◽  
Gang Zhao

Abstract We revisit the moving groups (MGs) in the solar neighborhood with a sample of 91,969 nearby stars constructed from LAMOST DR7. Using the wavelet technique and Monte Carlo simulations, five MGs together with a new candidate located at V≃−130 km s−1 are detected simultaneously in V − U 2 + 2 V 2 space. Taking into account the other known MGs, we conclude that MGs in the Galactic disk are spaced by approximately 15–25 km s−1 along V velocity. The origin of detected MGs is analyzed through the distributions of [Fe/H]−[Mg/Fe] and ages. Our results support attributing the origin to the continuous resonant mechanisms probably induced by the bar or spiral arms of the Milky Way.


2021 ◽  
pp. 1-2
Author(s):  
Leticia Carigi
Keyword(s):  

2021 ◽  
Vol 921 (2) ◽  
pp. 106
Author(s):  
Farnik Nikakhtar ◽  
Robyn E. Sanderson ◽  
Andrew Wetzel ◽  
Sarah Loebman ◽  
Sanjib Sharma ◽  
...  

2021 ◽  
Vol 921 (2) ◽  
pp. 168
Author(s):  
Susanne Pfalzner ◽  
Dylan Paterson ◽  
Michele T. Bannister ◽  
Simon Portegies Zwart

Abstract Interstellar objects (ISOs), the parent population of 1i/‘Oumuamua and 2i/Borisov, are abundant in the interstellar medium of the Milky Way. This means that the interstellar medium, including molecular-cloud regions, has three components: gas, dust, and ISOs. From observational constraints of the field density of ISOs drifting in the solar neighborhood, we infer that a typical molecular cloud of 10 pc diameter contains some 1018 ISOs. At typical sizes ranging from hundreds of meters to tens of kilometers, ISOs are entirely decoupled from the gas dynamics in these molecular clouds. Here we address the question of whether ISOs can follow the collapse of molecular clouds. We perform low-resolution simulations of the collapse of molecular clouds containing initially static ISO populations toward the point where stars form. In this proof-of-principle study, we find that the interstellar objects definitely follow the collapse of the gas—and many become bound to the new-forming numerical approximations to future stars (sinks). At minimum, 40% of all sinks have one or more ISO test particles gravitationally bound to them for the initial ISO distributions tested here. This value corresponds to at least 1010 actual ISOs being bound after three initial freefall times. Thus, ISOs are a relevant component of star formation. We find that more massive sinks bind disproportionately large fractions of the initial ISO population, implying competitive capture of ISOs. Sinks can also be solitary, as their ISOs can become unbound again—particularly if sinks are ejected from the system. Emerging planetary systems will thus develop in remarkably varied environments, ranging from solitary to richly populated with bound ISOs.


2021 ◽  
Vol 162 (5) ◽  
pp. 176
Author(s):  
Leonardo A. Paredes ◽  
Todd J. Henry ◽  
Samuel N. Quinn ◽  
Douglas R. Gies ◽  
Rodrigo Hinojosa-Goñi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document