International Journal of Astrobiology
Latest Publications


TOTAL DOCUMENTS

852
(FIVE YEARS 115)

H-INDEX

36
(FIVE YEARS 4)

Published By Cambridge University Press

1574-3006, 1473-5504

Author(s):  
Hitesh G. Changela ◽  
Elias Chatzitheodoridis ◽  
Andre Antunes ◽  
David Beaty ◽  
Kristian Bouw ◽  
...  

Author(s):  
Octavio A. Chon-Torres ◽  
Konrad Szocik

Abstract Astrotheology is presented as a discipline of study that manages to complement theology and science. It considers that each one has its own role and that as long as there is no reductionism that wants to monopolize the place of the other, fluid communication between both is possible. Therefore, it is worth examining epistemologically astrotheology in the light of astrobiology. To achieve this, we will highlight the aspect of experience in order to relate it to transdisciplinarity.


Author(s):  
L. A. L. da Silva

Abstract We present an alternative equation to estimate the probable number N of self-conscious intelligent technological societies (SCITSs) within the radius of the observable universe. This equation has only one poorly-known factor, Pc, the SCITS's formation probability, which can be estimated within an uncertainty by a factor of 102 (10−11 ≤ Pc ≤ 10−9) by applying the restriction imposed by Fermi's Paradox. The SCITS's formation rate for a typical spiral galaxy is then estimated as ≈1 civ Gyr−1. For a very optimistic maximum life expectancy ≈108 yr, the conclusion is that two civilizations never coexist in the same galaxy. Our estimated values for Pc are compatible with current biological and astrophysical evidences. We also propose an alternative astrosociological classification scheme which enables us to speculate about possible evolutionary paths for SCITSs in the universe. The so-called ‘Closed Bottle Neck’ (CBN) scenario suggests that civilizations are no exit evolutionary ways. We argue that simply there would not be interstellar travels nor Galaxy colonization or a Galactic Club. Thus Fermi's Paradox results eliminated, and the perspectives about the future of our own civilization may not be positive.


Author(s):  
Hitesh G. Changela ◽  
Elias Chatzitheodoridis ◽  
Andre Antunes ◽  
David Beaty ◽  
Kristian Bouw ◽  
...  

Abstract Mars exploration motivates the search for extraterrestrial life, the development of space technologies, and the design of human missions and habitations. Here, we seek new insights and pose unresolved questions relating to the natural history of Mars, habitability, robotic and human exploration, planetary protection, and the impacts on human society. Key observations and findings include: – high escape rates of early Mars' atmosphere, including loss of water, impact present-day habitability; – putative fossils on Mars will likely be ambiguous biomarkers for life; – microbial contamination resulting from human habitation is unavoidable; and – based on Mars' current planetary protection category, robotic payload(s) should characterize the local martian environment for any life-forms prior to human habitation. Some of the outstanding questions are: – which interpretation of the hemispheric dichotomy of the planet is correct; – to what degree did deep-penetrating faults transport subsurface liquids to Mars' surface; – in what abundance are carbonates formed by atmospheric processes; – what properties of martian meteorites could be used to constrain their source locations; – the origin(s) of organic macromolecules; – was/is Mars inhabited; – how can missions designed to uncover microbial activity in the subsurface eliminate potential false positives caused by microbial contaminants from Earth; – how can we ensure that humans and microbes form a stable and benign biosphere; and – should humans relate to putative extraterrestrial life from a biocentric viewpoint (preservation of all biology), or anthropocentric viewpoint of expanding habitation of space? Studies of Mars' evolution can shed light on the habitability of extrasolar planets. In addition, Mars exploration can drive future policy developments and confirm (or put into question) the feasibility and/or extent of human habitability of space.


Author(s):  
Saúl A. Villafañe-Barajas ◽  
María Colín-García

Abstract Since their discovery, submarine hydrothermal vent systems have been pointed out as important places where chemical evolution on Earth could have occurred; and their role in the process has been highlighted. Similarly, some hypotheses have considered these systems in origin of life scenarios. In this way, many experiments have been developed, and the knowledge about these systems has increased. Due to their complexity, many experimental simulations have only included a few of the geochemical variables present in these environments, pressure and temperature. Other main variables have hardly been included, such as mineralogy, thermal and pH gradients, dissolved ions and/or redox reactions. As it has been understood, the dynamism and heterogeneity of these environments are huge, and it comprises different scales, from single vents to full hydrothermal fields. However, the vast majority of experiments focus on a specific part of these systems and do not include salinity, mineralogy and pH gradients. For this reason, in this paper, we pointed out some considerations about how this dynamism can be interpreted, and included in some models, as well their importance in prebiotic chemistry experiments and their extrapolations regarding the hypothesis about the origins of life.


Author(s):  
Frances Westall ◽  
Keyron Hickman-Lewis ◽  
Barbara Cavalazzi ◽  
Frédéric Foucher ◽  
Laura Clodoré ◽  
...  

Abstract In this work, we address the difficulty of reliably identifying traces of life on Mars. Several independent lines of evidence are required to build a compelling body of proof. In particular, we underline the importance of correctly interpreting the geological and mineralogical context of the sites to be explored for the presence of biosignatures. We use as examples to illustrate this, ALH84001 (where knowledge of the geological context was very limited) and other terrestrial deposits, for which this could be properly established. We also discuss promising locations and formations to be explored by ongoing and future rover missions, including Oxia Planum, which, dated at 4.0 Ga, is the most ancient Mars location targeted for investigation yet.


Author(s):  
Samantha M. Waters ◽  
S. Marshall Ledford ◽  
Amanda Wacker ◽  
Sonali Verma ◽  
Bianca Serda ◽  
...  

Abstract Bacillus pumilus SAFR-032, an endospore-forming bacterial strain, was investigated to determine its methylation pattern (methylome) change, compared to ground control, after direct exposure to space conditions onboard the International Space Station (ISS) for 1.5 years. The resulting ISS-flown and non-flown strains were sequenced using the Nanopore MinION and an in-house method and pipeline to identify methylated positions in the genome. Our analysis indicated genomic variants and m6A methylation increased in the ISS-flown SAFR-032. To complement the broader omics investigation and explore phenotypic changes, ISS-flown and non-flown strains were compared in a series of laboratory-based chamber experiments using an X-ray irradiation source (doses applied at 250, 500, 750, 1000 and 1250 Gy); results show a potentially higher survival fraction of ISS-flown DS2 at the two highest exposures. Taken together, results from this study document lasting changes to the genome by methylation, potentially triggered by conditions in spaceflight, with functional consequences for the resistance of bacteria to stressors expected on long-duration missions beyond low Earth orbit.


Author(s):  
Claudia Pacelli ◽  
Alessia Cassaro ◽  
Mickael Baqué ◽  
Laura Selbmann ◽  
Laura Zucconi ◽  
...  

Abstract Mars is a primary target of astrobiological interest: its past environmental conditions may have been favourable to the emergence of a prebiotic chemistry and, potentially, biological activity. In situ exploration is currently underway at the Mars surface, and the subsurface (2 m depth) will be explored in the future ESA ExoMars mission. In this context, BIOlogy and Mars EXperiment was performed to evaluate the stability and detectability of organic biomarkers under space and Mars-like conditions. Our data suggested that some target molecules, namely melanin, azelaic acid and nucleic acids, can be detected even after 16 months exposure to Low Earth Orbit conditions by multidisciplinary approaches. We used the same techniques as onboard the ExoMars rover, as Raman and infrared spectroscopies and gas chromatograph-mass spectrometer, and polymerase chain reaction even if this is not planned for the imminent mission to Mars. These results should be taken into account for future Mars exploration.


Author(s):  
Brian C. Lacki

Abstract Interstellar travel in the Milky Way is commonly thought to be a long and dangerous enterprise, but are all galaxies so hazardous? I introduce the concept of galactic traversability to address this question. Stellar populations are one factor in traversability, with higher stellar densities and velocity dispersions aiding rapid spread across a galaxy. The interstellar medium (ISM) is another factor, as gas, dust grains and cosmic rays all pose hazards to starfarers. I review the current understanding of these components in different types of galaxies, and conclude that red quiescent galaxies without star formation have favourable traversability. Compact elliptical galaxies and globular clusters could be ‘super-traversable’, because stars are packed tightly together and there are minimal ISM hazards. Overall, if the ISM is the major hindrance to interstellar travel, galactic traversability increases with cosmic time as gas fractions and star formation decline. Traversability is a consideration in extragalactic surveys for the Search for Extraterrestrial Intelligence (SETI).


Sign in / Sign up

Export Citation Format

Share Document