scholarly journals The First Ionization Potential Effect from the Ponderomotive Force: On the Polarization and Coronal Origin of Alfvén Waves

2017 ◽  
Vol 844 (2) ◽  
pp. 153 ◽  
Author(s):  
J. Martin Laming
1983 ◽  
Vol 29 (2) ◽  
pp. 243-253 ◽  
Author(s):  
Tomikazu Namikawa ◽  
Hiromitsu Hamabata

The ponderomotive force generated by random Alfvén waves in a collisionless plasma is evaluated taking into account mean magnetic and velocity shear and is expressed as a series involving spatial derivatives of mean magnetic and velocity fields whose coefficients are associated with the helicity spectrum function of random velocity field. The effect of microscale random Alfvén waves through ponderomotive and mean electromotive forces generated by them on the propagation of large-scale Alfvén waves is also investigated.


2011 ◽  
Vol 18 (2) ◽  
pp. 235-241 ◽  
Author(s):  
A. K. Nekrasov ◽  
F. Z. Feygin

Abstract. We consider the action of the ponderomotive force of low-frequency Alfvén waves on the distribution of the background plasma. It is assumed that the ponderomotive force for traveling waves arises as a result of the background inhomogeneity of medium under study. Expressions for the ponderomotive force obtained in this paper differ from previous analogous results. The induced magnetic moment of medium is taken into account. It is shown that the well-known Pitayevsky's formula for the magnetic moment is not complete. The role of the induced nonlinear thermal pressure in the evolution of the background plasma is considered. We give estimations for plasma displacement due to the long- and short-acting nonlinear wave perturbations. Some discussion of the ponderomotive action of standing waves is provided.


1992 ◽  
Vol 47 (2) ◽  
pp. 249-260
Author(s):  
C. Kar ◽  
S. K. Majumdar ◽  
A. N. Sekar Iyengar

We have investigated a mode-coupling mechanism between kinetic Alfvén waves and a collisional drift wave in an inhomogeneous cylindrical plasma. Drift waves satisfying the condition k⊥D > 1/r0 (where r0 is the radius of the plasma cylinder) are stabilized by the low-frequency ponderomotive force generated by the kinetic Alfvén waves. For typical plasma parameters and a moderate level of Alfven-wave intensity the stabilization factor is comparable to the destabilization mechanism due to collisions.


Sign in / Sign up

Export Citation Format

Share Document