On the first ionization potential effect of the solar corona

1991 ◽  
Vol 11 (1) ◽  
pp. 247-250 ◽  
Author(s):  
W.-H. Ip ◽  
W.I. Axford
1992 ◽  
Vol 150 ◽  
pp. 425-426
Author(s):  
Raphael Steinitz ◽  
Estelle Kunoff

Chemical abundances in the solar corona or solar wind compared to those in the photosphere differentiate according to first ionization potential (FIP). We suggest that the effect is the result of diamagnetic diffusion pumps operating in the presence of gravitation and diverging magnetic structures. We then comment briefly on implications concerning abundances in the solar system and chemically peculiar stars.


Author(s):  
Donald V. Reames

AbstractWe have used abundance measurements to identify the sources and the physical processes of acceleration and transport of SEPs. Here we study energetic particles themselves as samples of the solar corona that is their origin, distinguishing the corona from the photosphere and the SEPs from the solar wind. Theoretically, differences in the first ionization potential “FIP effect” may distinguish closed- and open-field regions at the base of the corona, which may also distinguish SEPs from the solar wind. There is not a single coronal FIP effect, but two patterns, maybe three. Are there variations? What about He?


2021 ◽  
Author(s):  
Natalia Zambrana Prado ◽  
Éric Buchlin ◽  
Hardi Peter ◽  

<p>Linking solar activity on the surface and in the corona to the heliosphere is one of Solar Orbiter’s main goals. Its EUV spectrometer SPICE (SPectral Imaging of the Coronal Environment) will provide relative abundance measurements which will be key in this quest, as different structures on the Sun have different abundances as a consequence of the FIP (First Ionization Potential) effect. From the 16th to the 22nd of November 2020,  the Solar Orbiter remote sensing checkout window STP-122 was carried out. During this period of observations, SPICE was lucky to catch a small AR in its field of view. We carried out abundance specific observations in order to provide relative FIP bias measurements with SPICE. Furthermore, data from other types of observations carried out during that same week allow us to identify the spectral lines that could be used for abundance diagnostics. We take the SPICE instrument characteristics into account to give recommendations regarding the types of studies to carry out to obtain such abundance measurements.</p>


1997 ◽  
Vol 478 (1) ◽  
pp. 403-416 ◽  
Author(s):  
Jeremy J. Drake ◽  
J. Martin Laming ◽  
Kenneth G. Widing

Sign in / Sign up

Export Citation Format

Share Document