alfven waves
Recently Published Documents


TOTAL DOCUMENTS

1853
(FIVE YEARS 162)

H-INDEX

80
(FIVE YEARS 7)

Author(s):  
Rajab Ismayilli ◽  
Tom Van Doorsselaere ◽  
Marcel Goossens ◽  
Norbert Magyar

This investigation is concerned with uniturbulence associated with surface Alfvén waves that exist in a Cartesian equilibrium model with a constant magnetic field and a piece-wise constant density. The surface where the equilibrium density changes in a discontinuous manner are the source of surface Alfvén waves. These surface Alfvén waves create uniturbulence because of the variation of the density across the background magnetic field. The damping of the surface Alfvén waves due to uniturbulence is determined using the Elsässer formulation. Analytical expressions for the wave energy density, the energy cascade, and the damping time are derived. The study of uniturbulence due to surface Alfvén waves is inspired by the observation that (the fundamental radial mode of) kink waves behave similarly to surface Alfvén waves. The results for this relatively simple case of surface Alfvén waves can help us understand the more complicated case of kink waves in cylinders. We perform a series of 3D ideal MHD simulations for a numerical demonstration of the non-linearly self-cascading model of unidirectional surface Alfvén waves using the code MPI-AMRVAC. We show that surface Alfvén waves damping time in the numerical simulations follows well our analytical prediction for that quantity. Analytical theory and the simulations show that the damping time is inversely proportional to the amplitude of the surface Alfvén waves and the density contrast. This unidirectional cascade may play a role in heating the coronal plasma.


2022 ◽  
Vol 128 (2) ◽  
Author(s):  
Fabio Bacchini ◽  
Francesco Pucci ◽  
Francesco Malara ◽  
Giovanni Lapenta
Keyword(s):  

2022 ◽  
Author(s):  
kadri kurt

Abstract In this paper, (pure, slow, and fast) Alfvèn waves for the accepted conditions in Northern-hemisphere at E-region of ionospheric plasma were calculated with low latitudes by using Eq. (20,25-26) and the real geometry of Earth’s magnetic field, at hours 12.00 LT for the 1990 year which sunspot is maximum. One of the most important results of this study is to show analytically that the “MHD modes= (pure, slow and fast) Alfvèn waves” depend not only on the angle between the wave propagation vector (k) and the magnetic field (B) but also on the declination (D=It is the angle value between the direction of the sun's rays and the equatorial plane) and magnetic dip angle (I=It is the angle between real north and magnetic north). From the results obtained, the behavior of the magnitudes of the squares of the phase velocities of all MHD modes is consistent with the behavior of the distribution of electron density with low geographic latitude, even if the magnetic field vector is both perpendicular and parallel to the propagation vector of the wave. In parallel, the phase velocities of the waves are greater in summer than in winter. It has been determined that the propagation velocities of the fast and slow MHD mode in the magnetic equatorial trough region at (q = I) are very small, the energy is almost non-existent, but if q = 90 + I, the energy increases with latitude and is approximately maximum at the low latitude limit. It can be said that the minimum points are between 0-10 oN latitudes where the wave energies are the smallest, and the maximum points are between 20-30 oN latitudes the wave energies are the biggest.


2022 ◽  
Vol 924 (1) ◽  
pp. 33
Author(s):  
Feiyu Li ◽  
Xiangrong Fu ◽  
Seth Dorfman

Abstract The parametric decay of finite-size Alfvén waves in nonperiodic low-beta plasmas is investigated using one-dimensional (1D) hybrid simulations. Compared with the usual small periodic system, a wave packet in a large system under the absorption boundary condition shows different decay dynamics, including reduced energy transfer, localized density cavitation, and ion heating. The resulting Alfvén wave dynamics are influenced by several factors relating to this instability, including the growth rate, central wave frequency, and unstable bandwidth. A final steady state of the wave packet may be achieved when the instability does not have enough time to develop within the residual packet, and the packet size shows well-defined scaling dependencies on the growth rate, wave amplitude, and plasma beta. Under the proper conditions, enhanced secondary decay can also be excited in the form of a narrow, amplified wave packet. These results may help to interpret laboratory and spacecraft observations of Alfvén waves, and to refine our understanding of the associated energy transport and ion heating.


Author(s):  
Jicheng Sun ◽  
Guoqiang Wang ◽  
Tielong Zhang ◽  
Hongqiao Hu ◽  
Huigen Yang

2021 ◽  
Vol 61 (7) ◽  
pp. 1035-1037
Author(s):  
Yu. T. Tsap ◽  
A. V. Stepanov ◽  
Yu. G. Kopylova ◽  
O. V. Khaneychuk ◽  
T. B. Goldvarg

2021 ◽  
Vol 922 (2) ◽  
pp. L26
Author(s):  
Sergio Díaz-Suárez ◽  
Roberto Soler

Abstract High-resolution and high-cadence observations have shown that Alfvén waves are ubiquitous in the solar atmosphere. Theoretical works suggest their ability to transfer large energy fluxes from the photosphere to the corona and solar wind. In this proof-of-concept Letter we show that torsional Alfvén waves can induce the formation of filamentary plasma structures in the solar corona. We perform high-resolution 3D ideal MHD simulations in an initially uniform coronal plasma permeated by a line-tied twisted magnetic field. We find that torsional Alfvén waves develop Kelvin–Helmholtz instabilities as a result of the phase mixing process. The Kelvin–Helmholtz instability drives plasma compression that breaks the uniformity of density, creating elongated overdense threads aligned with the direction of the magnetic field. With synthetic modeling of SDO/AIA imaging we show that the overdense filaments could be seen in observations as fine strands that illuminate the underlying magnetic structure.


Pramana ◽  
2021 ◽  
Vol 95 (4) ◽  
Author(s):  
Manpreet Singh ◽  
Kuldeep Singh ◽  
N S Saini

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Chao Xiong ◽  
Claudia Stolle ◽  
Ingo Michaelis ◽  
Hermann Lühr ◽  
Yunliang Zhou ◽  
...  

AbstractIn this study we performed a detailed analysis on the scale-size of field-aligned currents (FACs) at auroral latitudes, using the well-calibrated magnetic data from the non-dedicated magnetic field mission, Gravity Recovery and Climate Experiment Follow-On (GRACE-FO). With two spacecraft following each other, the GRACE-FO provides a good opportunity to identify the variation of FACs with different scale lengths. The results show that the auroral FACs can be classified into two groups: the small-scale ones, shorter than some tens of kilometers, dominated by kinetic Alfvén waves, are quite dynamic; and the large-scale ones, typically larger than 150 km, can be considered as quasi-static and persist longer than 1 min. The GRACE-FO observations also reveal that the small-scale FACs at the same location sometimes can persist over 25 s, e.g., around dusk and dawn hours, which is longer than the typical persistent period (10 s) of kinetic Alfvén waves as earlier reported. The FAC structures show clear magnetic local time dependence, with higher correlations between the spacecraft around dusk and dawn hours; lower correlations are found around midnight and lowest correlations around noon, implying that the small-scale FACs most frequently appear at the noon cusp region. Slightly better correlations of FACs between two spacecraft are found during local summer, and such seasonal dependence is dominated by the correlations of small-scale FACs at noon. However, further analysis shows that the small-scale FACs at noon have largest occurrence and intensity during local summer, which reveals that when interpreting the cross-correlation analysis the intensity of FACs needs to be taken into account. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document