scholarly journals Isotropic Scaling Features Measured Locally in the Solar Wind Turbulence with Stationary Background Field

2020 ◽  
Vol 892 (2) ◽  
pp. 138 ◽  
Author(s):  
Honghong Wu ◽  
Chuanyi Tu ◽  
Xin Wang ◽  
Jiansen He ◽  
Liping Yang ◽  
...  
2020 ◽  
Author(s):  
Honghong Wu ◽  
Chuanyi Tu ◽  
Xin Wang ◽  
Jiansen He ◽  
Liping Yang ◽  
...  

<p>The scaling anisotropy is crucial to interpret the nonlinear interactions in solar wind turbulence. Previous observations provide diverse results and the structure functions analyses are also reported to be an approach to investigate the scaling anisotropy based on a local magnetic field. However, the determination of the sampling angle with respect to the local background magnetic field implicitly assumes that the observed time series are time stationary. If this assumed time-stationarity is compatible with the measurements has not been investigated. Here we utilize the second-order structure function method to study the scaling anisotropy with a time-stationary background field. We analyze 88 fast solar wind intervals each with time durations >=2 days measured by Wind spacecraft in the period 2005-2018. We calculate the local magnetic field as the average of the time series <strong>B</strong>(t') whose time-stationarity are fulfilled by our criterion φ<10<sup>o</sup> (φ is the angle between the two averaged magnetic field after cutting <strong>B</strong>(t') into two halves). We find for the first time the isotropic scaling feature of the magnetic-trace structure functions with scaling indices -0.63±0.08 and 0.70±0.04 respectively in the local parallel and perpendicular directions. The scaling for the velocity-trace structure functions is also isotropic and the indices are -0.47±0.10  and 0.51±0.09. </p>


2016 ◽  
Vol 116 (12) ◽  
Author(s):  
C. Perschke ◽  
Y. Narita ◽  
U. Motschmann ◽  
K. H. Glassmeier

2018 ◽  
Vol 867 (2) ◽  
pp. 168 ◽  
Author(s):  
Andrea Verdini ◽  
Roland Grappin ◽  
Olga Alexandrova ◽  
Sonny Lion

2017 ◽  
Vol 846 (2) ◽  
pp. L18 ◽  
Author(s):  
Silvio Sergio Cerri ◽  
Sergio Servidio ◽  
Francesco Califano

2020 ◽  
Vol 900 (2) ◽  
pp. 94 ◽  
Author(s):  
Zackary B. Pine ◽  
Charles W. Smith ◽  
Sophia J. Hollick ◽  
Matthew R. Argall ◽  
Bernard J. Vasquez ◽  
...  

New Astronomy ◽  
2021 ◽  
Vol 83 ◽  
pp. 101507
Author(s):  
Sean Oughton ◽  
N. Eugene Engelbrecht

2007 ◽  
Vol 25 (5) ◽  
pp. 1183-1197 ◽  
Author(s):  
M. L. Parkinson ◽  
R. C. Healey ◽  
P. L. Dyson

Abstract. Multi-scale structure of the solar wind in the ecliptic at 1 AU undergoes significant evolution with the phase of the solar cycle. Wind spacecraft measurements during 1995 to 1998 and ACE spacecraft measurements during 1997 to 2005 were used to characterise the evolution of small-scale (~1 min to 2 h) fluctuations in the solar wind speed vsw, magnetic energy density B2, and solar wind ε parameter, in the context of large-scale (~1 day to years) variations. The large-scale variation in ε most resembled large-scale variations in B2. The probability density of large fluctuations in ε and B2 both had strong minima during 1995, a familiar signature of solar minimum. Generalized Structure Function (GSF) analysis was used to estimate inertial range scaling exponents aGSF and their evolution throughout 1995 to 2005. For the entire data set, the weighted average scaling exponent for small-scale fluctuations in vsw was aGSF=0.284±0.001, a value characteristic of intermittent MHD turbulence (>1/4), whereas the scaling exponents for corresponding fluctuations in B2 and ε were aGSF=0.395±0.001 and 0.334±0.001, respectively. These values are between the range expected for Gaussian fluctuations (1/2) and Kolmogorov turbulence (1/3). However, the scaling exponent for ε changed from a Gaussian-Kolmogorov value of 0.373±0.005 during 1997 (end of solar minimum) to an MHD turbulence value of 0.247±0.004 during 2003 (recurrent fast streams). Changes in the characteristics of solar wind turbulence may be reproducible from one solar cycle to the next.


Sign in / Sign up

Export Citation Format

Share Document