energetic particles
Recently Published Documents


TOTAL DOCUMENTS

1329
(FIVE YEARS 181)

H-INDEX

74
(FIVE YEARS 6)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Chiara I. Paleari ◽  
Florian Mekhaldi ◽  
Florian Adolphi ◽  
Marcus Christl ◽  
Christof Vockenhuber ◽  
...  

AbstractDuring solar storms, the Sun expels large amounts of energetic particles (SEP) that can react with the Earth’s atmospheric constituents and produce cosmogenic radionuclides such as 14C, 10Be and 36Cl. Here we present 10Be and 36Cl data measured in ice cores from Greenland and Antarctica. The data consistently show one of the largest 10Be and 36Cl production peaks detected so far, most likely produced by an extreme SEP event that hit Earth 9125 years BP (before present, i.e., before 1950 CE), i.e., 7176 BCE. Using the 36Cl/10Be ratio, we demonstrate that this event was characterized by a very hard energy spectrum and was possibly up to two orders of magnitude larger than any SEP event during the instrumental period. Furthermore, we provide 10Be-based evidence that, contrary to expectations, the SEP event occurred near a solar minimum.


Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 39
Author(s):  
Rositsa Miteva ◽  
Susan W. Samwel

A comprehensive statistical analysis on the properties and accompanied phenomena of all M-class solar flares (as measured in soft X-rays) in the last two solar cycles (1996–2019) is presented here with a focus on their space weather potential. The information about the parent active region and the underlying sunspot (Hale) type is collected for each case, where possible, in order to identify photospheric precondition as precursors for the solar flare eruption or confinement. Associations with coronal mass ejections, solar energetic particles, and interplanetary radio emissions are also evaluated and discussed as possible proxies for flare eruption and subsequent space weather relevance. The results show that the majority (∼80%) of the analyzed M-class flares are of β, β-γ, and β-γ-δ magnetic field configuration. The M-class population of flares is accompanied by CMEs in 41% of the cases and about half of the flare sample has been associated with radio emission from electron beams. A much lower association (≲10%) is obtained with shock wave radio signatures and energetic particles. Furthermore, a parametric scheme is proposed in terms of occurrence rates between M-class flares and a variety of accompanied solar phenomena as a function of flare sub-classes or magnetic type. This study confirms the well-known reduced but inevitable space weather importance of M-class flares.


2021 ◽  
Author(s):  
Radoslav Bucik ◽  
Glenn Mason ◽  
Raul Gomez-Herrero ◽  
David Lario ◽  
Laura Balmaceda ◽  
...  

2021 ◽  
Author(s):  
Shrikanth G Kanekal ◽  
Christophe Royon ◽  
Doumerg W. d'Assignies ◽  
Florian Gautier ◽  
Ashley D Greeley ◽  
...  

2021 ◽  
Vol 923 (2) ◽  
pp. 209
Author(s):  
A. Shalchi

Abstract Over the past two decades scientists have significantly improved our understanding of the transport of energetic particles across a mean magnetic field. Due to test-particle simulations, as well as powerful nonlinear analytical tools, our understanding of this type of transport is almost complete. However, previously developed nonlinear analytical theories do not always agree perfectly with simulations. Therefore, a correction factor a 2 was incorporated into such theories with the aim to balance out inaccuracies. In this paper a new analytical theory for perpendicular transport is presented. This theory contains the previously developed unified nonlinear transport theory, the most advanced theory to date, in the limit of small Kubo number turbulence. New results have been obtained for two-dimensional turbulence. In this case, the new theory describes perpendicular diffusion as a process that is sub-diffusive while particles follow magnetic field lines. Diffusion is restored as soon as the turbulence transverse complexity becomes important. For long parallel mean-free paths, one finds that the perpendicular diffusion coefficient is a reduced field line random walk limit. For short parallel mean-free paths, on the other hand, one gets a hybrid diffusion coefficient that is a mixture of collisionless Rechester & Rosenbluth and fluid limits. Overall, the new analytical theory developed in the current paper is in agreement with heuristic arguments. Furthermore, the new theory agrees almost perfectly with previously performed test-particle simulations without the need of the aforementioned correction factor a 2 or any other free parameter.


2021 ◽  
Vol 922 (2) ◽  
pp. 200
Author(s):  
J. P. van den Berg ◽  
N. E. Engelbrecht ◽  
N. Wijsen ◽  
R. D. Strauss

Abstract Particle drifts perpendicular to the background magnetic field have been proposed by some authors as an explanation for the very efficient perpendicular transport of solar energetic particles (SEPs). This process, however, competes with perpendicular diffusion caused by magnetic turbulence, which can also disrupt the drift patterns and reduce the magnitude of drift effects. The latter phenomenon is well known in cosmic-ray studies, but not yet considered in SEP models. Additionally, SEP models that do not include drifts, especially for electrons, use turbulent drift reduction as a justification of this omission, without critically evaluating or testing this assumption. This article presents the first theoretical step for a theory of drift suppression in SEP transport. This is done by deriving the turbulence-dependent drift reduction function with a pitch-angle dependence, as is applicable for anisotropic particle distributions, and by investigating to what extent drifts will be reduced in the inner heliosphere for realistic turbulence conditions and different pitch-angle dependencies of the perpendicular diffusion coefficient. The influence of the derived turbulent drift reduction factors on the transport of SEPs are tested, using a state-of-the-art SEP transport code, for several expressions of theoretically derived perpendicular diffusion coefficients. It is found, for realistic turbulence conditions in the inner heliosphere, that cross-field diffusion will have the largest influence on the perpendicular transport of SEPs, as opposed to particle drifts.


Author(s):  
Mario Podesta ◽  
Marina Gorelenkova ◽  
Nikolai N Gorelenkov ◽  
Roscoe B White ◽  
Phillip Bonofiglo ◽  
...  

Abstract The sawtooth instability is known for inducing transport and loss of energetic particles (EP), and for generating seed magnetic islands that can trigger tearing modes. Both effects degrade the overall plasma performance. Several theories and numerical models have been previously developed to quantify the expected EP transport caused by sawteeth, with various degrees of sophistication to differentiate the response of EPs at different energies and on different orbits (e.g. passing vs. trapped), although the analysis is frequently limited to a single time slice during a tokamak discharge. This work describes the development and initial benchmark of a framework that enables a reduced model for EP transport by sawteeth retaining the full EP phase-space information. The model, implemented in the ORBIT hamiltonian particle-following code, can be used either as a standalone post-processor taking input data from codes such as TRANSP, or as a preprocessor to compute transport coefficients that can be fed back to TRANSP for time-dependent simulations including the effects of sawteeth on energetic particles. The advantage of the latter approach is that the evolution of the EP distribution can be simulated quantitatively for sawtoothing discharges, thus enabling a more accurate modeling of sources, sinks and overall transport properties of EP and thermal plasma species for comprehensive physics studies that require detailed information of the fast ion distribution function and its evolution over time.


Sign in / Sign up

Export Citation Format

Share Document