scholarly journals A New Parameterization of the Star Formation Rate Dense Gas Mass Relation: Embracing Gas Density Gradients

2020 ◽  
Vol 903 (1) ◽  
pp. 56
Author(s):  
G. Parmentier ◽  
A. Pasquali
2012 ◽  
Vol 8 (S292) ◽  
pp. 87-90
Author(s):  
L. Testi ◽  
E. Bressert ◽  
S. Longmore

AbstractWe summarize some of the results obtained from Herschel surveys of nearby star forming regions and the Galactic plane. We show that in the nearby star forming regions the starless core spatial surface density distribution is very similar to that of the young stellar objects. This, taken together with the similarity between the core mass function and the initial mass function for stars and the relationship between the amount of dense gas and star formation rate, suggest that the cloud fragmentation process defines the global outcome of star formation. This “simple” view of star formation may not hold on all scales. In particular dynamical interactions are expected to become important at the conditions required to form young massive clusters. We describe the successes of a simple criterion to identify young massive cluster precursors in our Galaxy based on (sub-)millimeter wide area surveys. We further show that in the location of our Galaxy where the best candidate for a precursor of a young massive cluster is found, the “simple” scaling relationship between dense gas and star formation rate appear to break down. We suggest that in regions where the conditions approach those of the central molecular zone of our Galaxy it may be necessary to revise the scaling laws for star formation.


2013 ◽  
Vol 434 (1) ◽  
pp. 423-436 ◽  
Author(s):  
Yusei Koyama ◽  
Ian Smail ◽  
Jaron Kurk ◽  
James E. Geach ◽  
David Sobral ◽  
...  

2015 ◽  
Vol 815 (2) ◽  
pp. 98 ◽  
Author(s):  
Irene Shivaei ◽  
Naveen A. Reddy ◽  
Alice E. Shapley ◽  
Mariska Kriek ◽  
Brian Siana ◽  
...  

2008 ◽  
Vol 681 (2) ◽  
pp. L73-L76 ◽  
Author(s):  
R. S. Bussmann ◽  
D. Narayanan ◽  
Y. L. Shirley ◽  
S. Juneau ◽  
J. Wu ◽  
...  

2019 ◽  
Vol 491 (4) ◽  
pp. 5083-5100
Author(s):  
Jaime Salcido ◽  
Richard G Bower ◽  
Tom Theuns

ABSTRACT We introduce a simple analytic model of galaxy formation that links the growth of dark matter haloes in a cosmological background to the build-up of stellar mass within them. The model aims to identify the physical processes that drive the galaxy-halo co-evolution through cosmic time. The model restricts the role of baryonic astrophysics to setting the relation between galaxies and their haloes. Using this approach, galaxy properties can be directly predicted from the growth of their host dark matter haloes. We explore models in which the effective star formation efficiency within haloes is a function of mass (or virial temperature) and independent of time. Despite its simplicity, the model reproduces self-consistently the shape and evolution of the cosmic star formation rate density, the specific star formation rate of galaxies, and the galaxy stellar mass function, both at the present time and at high redshifts. By systematically varying the effective star formation efficiency in the model, we explore the emergence of the characteristic shape of the galaxy stellar mass function. The origin of the observed double Schechter function at low redshifts is naturally explained by two efficiency regimes in the stellar to halo mass relation, namely, a stellar feedback regulated stage, and a supermassive black hole regulated stage. By providing a set of analytic differential equations, the model can be easily extended and inverted, allowing the roles and impact of astrophysics and cosmology to be explored and understood.


2020 ◽  
Vol 499 (3) ◽  
pp. 3061-3070
Author(s):  
Julie Nantais ◽  
Gillian Wilson ◽  
Adam Muzzin ◽  
Lyndsay J Old ◽  
Ricardo Demarco ◽  
...  

ABSTRACT We calculate H α-based star formation rates and determine the star formation rate–stellar mass relation for members of three Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS) clusters at z ∼ 1.6 and serendipitously identified field galaxies at similar redshifts to the clusters. We find similar star formation rates in cluster and field galaxies throughout our range of stellar masses. The results are comparable to those seen in other clusters at similar redshifts, and consistent with our previous photometric evidence for little quenching activity in clusters. One possible explanation for our results is that galaxies in our z ∼ 1.6 clusters have been accreted too recently to show signs of environmental quenching. It is also possible that the clusters are not yet dynamically mature enough to produce important environmental quenching effects shown to be important at low redshift, such as ram-pressure stripping or harassment.


2019 ◽  
Vol 15 (S352) ◽  
pp. 70-70
Author(s):  
Rohan Potham Naidu

AbstractWe present an empirical model built on a high-resolution N-body dark matter simulation. We assume a redshift-independent star-formation efficiency for each halo to convert the accretion rate into a star-formation rate. Our model is calibrated using the z = 4 UV luminosity function (UVLF) and successfully predicts the observed UVLF at z = 5 – 10. We present predictions at z = 5 – 10 for UV luminosity and stellar mass functions, JWST number counts, the stellar-to-halo mass relation and star-formation histories. We combine this model with bleeding-edge reionization constraints (from z > 7 quasars, z ∼ 7 Ly α line-profiles, the updated Planck τ) to find new perspectives on the Epoch of Reionization (EoR). We find MUV < − 13.5 galaxies need an average fesc = 0.22 ± 0.05 to drive reionization and a highly compressed timeline: the IGM neutral fraction is [0.9, 0.5, 0.1] at z = [8.4 ± 0.2, 7.0 ± 0.2, 6.3 ± 0.2]. Inspired by the newly assembled sample of Lyman Continuum leakers that unanimously displays higher-than-average star-formation surface density (sigma), we fit a model tying fesc to sigma. Since sigma grows by > 2.5 dex over z = 0 – 8, our model explains the humble values of fesc at low-z. We find, strikingly, that < 5% of galaxies with MUV < − 18 account for > 80% of the reionization budget. We predict leakers like COLA1 (z = 6.6, MUV = − 21.5) become common towards the EoR and that the protagonists of reionization are not hiding across the faint-end of the luminosity function but are already known to us.


Sign in / Sign up

Export Citation Format

Share Document