rate versus
Recently Published Documents


TOTAL DOCUMENTS

477
(FIVE YEARS 75)

H-INDEX

45
(FIVE YEARS 5)

Author(s):  
K.A. Soltanbekova ◽  
◽  
B.K. Assilbekov ◽  
A.B. Zolotukhin ◽  
◽  
...  

One of the modern approaches for the effective development of small deposits is the construction and operation of wells with a complex architecture: horizontal wells (HW), sidetracks (BS, BGS), multilateral wells (MLW). Sidetracking makes it possible to reanimate an old well that is in an emergency state or inactivity for technological reasons, by opening layers that have not been previously developed, bypassing contamination zones, or watering the formation. This study examines the possibility of using horizontal sidetracks in the operating wells of the field of the Zhetybai group. To select the optimal length of the horizontal sidetrack of the wells, graphs of the dependences of the change in flow rate versus length of the horizontal well were built, taking into account the pressure losses due to friction. It can be seen from the dependence of NPV versus length of the horizontal wellbore that the maximum NPV is achieved with a horizontal wellbore length of 100 m. A further increase in the length of the horizontal wellbore leads to a decrease in NPV. This is due, firstly, to a decrease in oil prices, and secondly, interference of wells, a small number of residual reserves, and a small oil-bearing area. As a result of a comparison of technical and economic criteria, the optimal length of a horizontal wellbore is from 100-300 meters. Comparison of the flow rates of vertical wells and wells with horizontal sidetracks showed a clear advantage over the latter in all respects.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009737
Author(s):  
Xiamin Leng ◽  
Debbie Yee ◽  
Harrison Ritz ◽  
Amitai Shenhav

To invest effort into any cognitive task, people must be sufficiently motivated. Whereas prior research has focused primarily on how the cognitive control required to complete these tasks is motivated by the potential rewards for success, it is also known that control investment can be equally motivated by the potential negative consequence for failure. Previous theoretical and experimental work has yet to examine how positive and negative incentives differentially influence the manner and intensity with which people allocate control. Here, we develop and test a normative model of control allocation under conditions of varying positive and negative performance incentives. Our model predicts, and our empirical findings confirm, that rewards for success and punishment for failure should differentially influence adjustments to the evidence accumulation rate versus response threshold, respectively. This dissociation further enabled us to infer how motivated a given person was by the consequences of success versus failure.


2021 ◽  
Vol 24 (4) ◽  
pp. 365-369
Author(s):  
A. O. Pozdnyakov ◽  
A. L. Pushkarchuk ◽  
S. A. Kuten ◽  
L. F. Babichev

Mass-spectrometric thermal decomposition experiments with submicron films of neat polymethylmethacrylate (PMMA), and PMMA-fullerene composite (PMMA-C60) after UV irradiation are discussed. The experiment registers thermal desorption mass spectra (TDMS), that is the monomer desorption rate versus time upon gradual heating the PMMA films in a given heating regime. The spectra provide information on the amount of the monomer desorbed at different decomposition stages upon heating the given amount of film material as well as on the spectral shape changes. It is shown that both amount of monomer and the TDMS spectral shape are sensitive to the presence of fullerene and UV irradiation. The experimental results are discussed in terms of quantum chemical models of binding. The DFT/B3LYP-D3/def2/J RIJCOSX level of theory was used. The MMA-C60 structures which can yield different amounts of monomer have been compared.


2021 ◽  
Vol 21 (23) ◽  
pp. 17373-17388
Author(s):  
Dirk Dienhart ◽  
John N. Crowley ◽  
Efstratios Bourtsoukidis ◽  
Achim Edtbauer ◽  
Philipp G. Eger ◽  
...  

Abstract. Formaldehyde (HCHO) is the most abundant aldehyde in the troposphere. While its background mixing ratio is mostly determined by the oxidation of methane, in many environments, especially in the boundary layer, HCHO can have a large variety of precursors, in particular biogenic and anthropogenic volatile organic compounds (VOCs) and their oxidation products. Here we present shipborne observations of HCHO, hydroxyl radical (OH) and OH reactivity (R(OH)), which were obtained during the Air Quality and Climate Change in the Arabian Basin (AQABA) campaign in summer 2017. The loss rate of HCHO was inferred from its reaction with OH, measured photolysis rates and dry deposition. In photochemical steady state, the HCHO loss is balanced by production via OH-initiated degradation of VOCs, photolysis of oxygenated VOCs (OVOCs) and the ozonolysis of alkenes. The slope αeff from a scatter plot of the HCHO production rate versus the product of OH and R(OH)eff (excluding inorganic contribution) yields the fraction of OH reactivity that contributes to HCHO production. Values of αeff varied between less than 2 % in relatively clean air over the Arabian Sea and the southern Red Sea and up to 32 % over the polluted Arabian Gulf (also known as Persian Gulf), signifying that polluted areas harbor a larger variety of HCHO precursors. The separation of R(OH)eff into individual compound classes revealed that elevated values of αeff coincided with increased contribution of alkanes and OVOCs, with the highest reactivity of all VOCs over the Arabian Gulf.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Prajit Dhara ◽  
Ashlesha Patil ◽  
Hari Krovi ◽  
Saikat Guha

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1412
Author(s):  
Caroline E. Reilly ◽  
Nirupam Hatui ◽  
Thomas E. Mates ◽  
Pratik Koirala ◽  
Adedapo A. Oni ◽  
...  

The integration of different electronic materials systems together has gained increasing interest in recent years, with the III-nitrides being a favorable choice for a variety of electronic applications. To increase flexibility in integration options, growing nitrides material directly on semi-processed wafers would be advantageous, necessitating low temperature (LT) growth schemes. In this work, the growth of AlN and GaN was conducted via metalorganic chemical vapor deposition (MOCVD) using both NH3 and DMHy as N-precursors. The relationships between growth rate versus temperature were determined within the range of 300 to 550 °C. The growth of AlN/GaN heterostructures was also investigated herein, employing flow modulation epitaxy MOCVD at 550 °C. Subsequent samples were studied via atomic force microscopy, X-ray diffraction, TEM, and Hall measurements. Two-dimensional electron gases were found in samples where the LT AlN layer was grown with NH3, with one sample showing high electron mobility and sheet charge of 540 cm2/V∙s and 3.76 × 1013 cm−2, respectively. Inserting a LT GaN layer under the LT AlN layer caused the mobility and charge to marginally decrease while still maintaining sufficiently high values. This sets the groundwork towards use of LT nitrides MOCVD in future electronic devices integrating III-nitrides with other materials.


2021 ◽  
pp. 135245852110559
Author(s):  
Jun-ichi Kira ◽  
Jin Nakahara ◽  
Denis V Sazonov ◽  
Takayoshi Kurosawa ◽  
Isao Tsumiyama ◽  
...  

Background: Ofatumumab, the first fully human anti-CD20 monoclonal antibody, has been developed as a treatment for relapsing multiple sclerosis (RMS) which can be self-administered at home. Objective: To investigate the efficacy and safety of ofatumumab in RMS patients from Japan and Russia. Methods: APOLITOS included a 24-week, double-blind, placebo-controlled core-part followed by an open-label extension-part. Patients were randomized (2:1) to subcutaneous ofatumumab 20 mg or placebo. Primary outcome was the number of gadolinium-enhancing (Gd+) T1 lesions per scan over 24 weeks. Results: Sixty-four patients were randomized (ofatumumab, n = 43; placebo, n = 21). Primary endpoint was met; ofatumumab reduced Gd + T1 lesions versus placebo by 93.6% ( p < 0.001) and the results were consistent across regions (Japan/Russia). Ofatumumab reduced annualized T2 lesion and relapse rate versus placebo by week 24. Both groups showed benefit from ofatumumab in the extension-part. Incidence of adverse events was lower with ofatumumab versus placebo (69.8% vs 81.0%); injection-related reactions were most common. No deaths, opportunistic infections, or malignancies were reported. Conclusion: Ofatumumab demonstrated superior efficacy versus placebo, with sustained effect through 48 weeks in RMS patients from Japan/Russia. Switching to ofatumumab after 24 weeks led to rapid radiological and clinical benefits. Safety findings were consistent with pivotal trials.


2021 ◽  
Vol 1 (3) ◽  
pp. 169-175
Author(s):  
Maryam Akhlaghi ◽  
Esmaeil Salahi ◽  
Seyed Ali Tayebifard ◽  
Gert Schmidt

Five TiAl–Ti3AlC2 composite samples containing (10, 15, 20, 25 and 30 wt% Ti3AlC2 MAX phase) were prepared by spark plasma sintering technique at 900 °C for 7 min under 40 MPa. For this purpose, metallic titanium and aluminum powders (aiming at the in-situ formation of the TiAl matrix phase) were ball-milled with predetermined contents of Ti3AlC2 MAX phase, which already was synthesized using the same metallic powders as well as graphite flakes. Displacement-time-temperature variations during the heating and sintering steps, displacement rate versus temperature, displacement rate versus time, and densification behavior were studied. Two sharp changes were detected in the diagrams: the first one, ~16 min after the start of the heating process due to the melting of Al, and the second one, after ~35 min because of the sintering progression and the applied final pressure. The highest relative densities were measured for the samples doped with 20 and 25 wt% Ti3AlC2 additives. More Ti3AlC2 addition resulted in decreased relative density because of the agglomeration of MAX phase particles.


2021 ◽  
Author(s):  
Helmi Pratikno ◽  
W. John Lee ◽  
Cesario K. Torres

Abstract This paper presents a method to identify switch time from end of linear flow (telf) to transition or boundary-dominated flow (BDF) by utilizing multiple diagnostic plots including a Modified Fetkovich type curve (Eleiott et al. 2019). In this study, we analyzed publicly available production data to analyze transient linear flow behavior and boundary-dominated flow from multiple unconventional reservoirs. This method applies a log-log plot of rate versus time combined with a log-log plot of rate versus material balance time (MBT). In addition to log-log plots, a specialized plot of rate versus square root of time is used to confirm telf. A plot of MBT versus actual time, t, is provided to convert material balance time to actual time, and vice versa. The Modified Fetkovich type curve is used to estimate decline parameters and reservoir properties. Applications of this method using monthly production data from Bakken and Permian Shale areas are presented in this work. Utilizing public data, our comprehensive review of approximately 800 multi-staged fractured horizontal wells (MFHW) from North American unconventional reservoirs found many of them exhibiting linear flow production characteristics. To identify end of linear flow, a log-log plot of rate versus time alone is not sufficient, especially when a well is not operated in a consistent manner. This paper shows using additional diagnostic plots such as rate versus MBT and specialized plots can assist interpreters to better identify end of linear flow. With the end of linear flow determined for these wells, the interpreter can use the telf to forecast future production and estimate reservoir properties using the modified type curve. These diagnostic plots can be added to existing production analysis tools so that engineers can analyze changes in flow regimes in a timely manner, have better understanding of how to forecast their wells, and reduce the uncertainty in estimated ultimate recoveries related to decline parameters.


Sign in / Sign up

Export Citation Format

Share Document