dense gas
Recently Published Documents


TOTAL DOCUMENTS

909
(FIVE YEARS 102)

H-INDEX

56
(FIVE YEARS 8)

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8483
Author(s):  
Tomasz Węsierski ◽  
Robert Piec ◽  
Małgorzata Majder-Łopatka ◽  
Bernard Król ◽  
Wiktor Gawroński ◽  
...  

The publication presents the results of a field test of 2–4 min releases of 96% LNG from a road tanker designed to carry the gas. The release was performed at a pressure of 5.9–6.1 atm at a discharge rate of 1.67–1.78 kg/s from a height of 0.75 m under class B conditions of atmospheric stability. Comparison of the obtained experimental results of the maximum concentrations and the simulation carried out with the EFFECS (11.2.0) software showed that the Gaussian gas model better describes the gas cloud propagation at most control points at this release intensity than the dense gas model. The dense gas model gave only slightly better results along the cloud propagation axis at close distances, not exceeding 25/30 m at ground level. It is shown that concentrations between 71% and 110% LEL are observed at the cloud visibility limit. The maximum value of the temperature drop, in the release axis, at a distance of 4 m amounts to ∆Tmax = 93.3 °C. This indicates that the cloud of the released LNG is almost entirely in the vapour state already in the short distance from the point of release, due to the turbulent outflow of the pressurised gas.


2021 ◽  
Vol 257 (2) ◽  
pp. 57
Author(s):  
Junko Ueda ◽  
Daisuke Iono ◽  
Min S. Yun ◽  
Tomonari Michiyama ◽  
Yoshimasa Watanabe ◽  
...  

Abstract We present the 3 mm wavelength spectra of 28 local galaxy merger remnants obtained with the Large Millimeter Telescope. Sixteen molecular lines from 14 different molecular species and isotopologues were identified, and 21 out of 28 sources were detected in one or more molecular lines. On average, the line ratios of the dense gas tracers, such as HCN (1–0) and HCO+(1–0), to 13CO (1–0) are 3–4 times higher in ultra/luminous infrared galaxies (U/LIRGs) than in non-LIRGs in our sample. These high line ratios could be explained by the deficiency of 13CO and high dense gas fractions suggested by high HCN (1–0)/12CO (1–0) ratios. We calculate the IR-to-HCN (1–0) luminosity ratio as a proxy of the dense gas star formation efficiency. There is no correlation between the IR/HCN ratio and the IR luminosity, while the IR/HCN ratio varies from source to source ((1.1–6.5) × 103 L ☉/(K km s−1 pc2)). Compared with the control sample, we find that the average IR/HCN ratio of the merger remnants is higher by a factor of 2–3 than those of the early/mid-stage mergers and nonmerging LIRGs, and it is comparable to that of the late-stage mergers. The IR-to-12CO (1–0) ratios show a similar trend to the IR/HCN ratios. These results suggest that star formation efficiency is enhanced by the merging process and maintained at high levels even after the final coalescence. The dynamical interactions and mergers could change the star formation mode and continue to impact the star formation properties of the gas in the postmerger phase.


2021 ◽  
Vol 922 (2) ◽  
pp. 131
Author(s):  
Neven Tomičić ◽  
Benedetta Vulcani ◽  
Bianca M. Poggianti ◽  
Ariel Werle ◽  
Ancla Müller ◽  
...  

Abstract Diffuse ionized gas (DIG) is an important component of the interstellar medium that can provide insights into the different physical processes affecting the gas in galaxies. We utilize optical IFU observations of 71 gas-stripped and control galaxies from the Gas Stripping Phenomena in galaxies (GASP) survey, to analyze the gas properties of dense ionized gas and DIG, such as metallicity, ionization parameter log(q), and the difference between the measured log[O i]/Hα and the value predicted by star-forming models given the measured log[Oiii]/Hβ (Δ log[O i]/Hα). We compare these properties at different spatial scales, among galaxies at different gas-stripping stages, and between disks and tails of the stripped galaxies. The metallicity is similar between the dense gas and DIG at a given galactocentric radius. The log(q) is lower for DIG compared to dense gas. The median values of log(q) correlate best with stellar mass and the most massive galaxies show an increase in log(q) toward their galactic centers. The DIG clearly shows higher Δ log[O i]/Hα values compared to the dense gas, with much of the spaxels having LIER/LINER-like emission. The DIG regions in the tails of highly stripped galaxies show the highest Δ log[O i]/Hα, exhibit high values of log(q), and extend to large projected distances from star-forming areas (up to 10 kpc). We conclude that the DIG in the tails is at least partly ionized by a process other than star formation, probably by mixing, shocks, and accretion of inter-cluster and interstellar medium gas.


2021 ◽  
Vol 33 (11) ◽  
pp. 115113
Author(s):  
Lishu Duan ◽  
Qinmin Zheng ◽  
Zhou Jiang ◽  
Jianchun Wang

2021 ◽  
Author(s):  
Dang Khoa Tran ◽  
Ming-Wei Lin ◽  
Yao-Li Liu ◽  
Shao-Wei Chou ◽  
Shih-Hung Chen

2021 ◽  
Vol 918 (1) ◽  
pp. 13
Author(s):  
Vadim A. Semenov ◽  
Andrey V. Kravtsov ◽  
Nickolay Y. Gnedin

Author(s):  
Hao-Kun Liu ◽  
Zhe-Hang Shi ◽  
Wei-Feng Li ◽  
Hai-Feng Liu ◽  
Fu-Chen Wang

Sign in / Sign up

Export Citation Format

Share Document