mass function
Recently Published Documents


TOTAL DOCUMENTS

2048
(FIVE YEARS 472)

H-INDEX

117
(FIVE YEARS 17)

Author(s):  
C. Tortora ◽  
N. R. Napolitano

Dark matter (DM) is predicted to be the dominant mass component in galaxies. In the central region of early-type galaxies it is expected to account for a large amount of the total mass, although the stellar mass should still represent the majority of the mass budget, depending on the stellar initial mass function (IMF). We discuss latest results on the DM fraction and mean DM density for local galaxies and explore their evolution with redshifts in the last 8 Gyr of the cosmic history. We compare these results with expectations from the ΛCDM model and discuss the role of the IMF and galaxy model through the central total mass density slope. We finally present future perspectives offered by next-generation instruments/surveys (Rubin/LSST, Euclid, CSST, WEAVE, 4MOST, and DESI), which will provide the unique chance to measure the DM evolution with time for an unprecedented number of galaxies and constrain their evolutionary scenario.


2022 ◽  
Vol 7 (2) ◽  
pp. 1726-1741
Author(s):  
Ahmed Sedky Eldeeb ◽  
◽  
Muhammad Ahsan-ul-Haq ◽  
Mohamed. S. Eliwa ◽  
◽  
...  

<abstract> <p>In this paper, a flexible probability mass function is proposed for modeling count data, especially, asymmetric, and over-dispersed observations. Some of its distributional properties are investigated. It is found that all its statistical and reliability properties can be expressed in explicit forms which makes the proposed model useful in time series and regression analysis. Different estimation approaches including maximum likelihood, moments, least squares, Andersonӳ-Darling, Cramer von-Mises, and maximum product of spacing estimator, are derived to get the best estimator for the real data. The estimation performance of these estimation techniques is assessed via a comprehensive simulation study. The flexibility of the new discrete distribution is assessed using four distinctive real data sets ԣoronavirus-flood peaks-forest fire-Leukemia? Finally, the new probabilistic model can serve as an alternative distribution to other competitive distributions available in the literature for modeling count data.</p> </abstract>


2022 ◽  
Vol 924 (2) ◽  
pp. 56
Author(s):  
Alex Sicilia ◽  
Andrea Lapi ◽  
Lumen Boco ◽  
Mario Spera ◽  
Ugo N. Di Carlo ◽  
...  

Abstract This is the first paper in a series aimed at modeling the black hole (BH) mass function, from the stellar to the intermediate to the (super)massive regime. In the present work, we focus on stellar BHs and provide an ab initio computation of their mass function across cosmic times; we mainly consider the standard, and likely dominant, production channel of stellar-mass BHs constituted by isolated single/binary star evolution. Specifically, we exploit the state-of-the-art stellar and binary evolutionary code SEVN, and couple its outputs with redshift-dependent galaxy statistics and empirical scaling relations involving galaxy metallicity, star formation rate and stellar mass. The resulting relic mass function dN / dVd log m • as a function of the BH mass m • features a rather flat shape up to m • ≈ 50 M ⊙ and then a log-normal decline for larger masses, while its overall normalization at a given mass increases with decreasing redshift. We highlight the contribution to the local mass function from isolated stars evolving into BHs and from binary stellar systems ending up in single or binary BHs. We also include the distortion on the mass function induced by binary BH mergers, finding that it has a minor effect at the high-mass end. We estimate a local stellar BH relic mass density of ρ • ≈ 5 × 107 M ⊙ Mpc−3, which exceeds by more than two orders of magnitude that in supermassive BHs; this translates into an energy density parameter Ω• ≈ 4 × 10−4, implying that the total mass in stellar BHs amounts to ≲1% of the local baryonic matter. We show how our mass function for merging BH binaries compares with the recent estimates from gravitational wave observations by LIGO/Virgo, and discuss the possible implications for dynamical formation of BH binaries in dense environments like star clusters. We address the impact of adopting different binary stellar evolution codes (SEVN and COSMIC) on the mass function, and find the main differences to occur at the high-mass end, in connection with the numerical treatment of stellar binary evolution effects. We highlight that our results can provide a firm theoretical basis for a physically motivated light seed distribution at high redshift, to be implemented in semi-analytic and numerical models of BH formation and evolution. Finally, we stress that the present work can constitute a starting point to investigate the origin of heavy seeds and the growth of (super)massive BHs in high-redshift star-forming galaxies, that we will pursue in forthcoming papers.


2022 ◽  
Vol 924 (1) ◽  
pp. 9
Author(s):  
Tim Hallatt ◽  
Eve J. Lee

Abstract The sub-Saturn (∼4–8 R ⊕) occurrence rate rises with orbital period out to at least ∼300 days. In this work we adopt and test the hypothesis that the decrease in their occurrence toward the star is a result of atmospheric mass loss, which can transform sub-Saturns into sub-Neptunes (≲4 R ⊕) more efficiently at shorter periods. We show that under the mass-loss hypothesis, the sub-Saturn occurrence rate can be leveraged to infer their underlying core mass function, and, by extension, that of gas giants. We determine that lognormal core mass functions peaked near ∼10–20 M ⊕ are compatible with the sub-Saturn period distribution, the distribution of observationally inferred sub-Saturn cores, and gas-accretion theories. Our theory predicts that close-in sub-Saturns should be ∼50% less common and ∼30% more massive around rapidly rotating stars; this should be directly testable for stars younger than ≲500 Myr. We also predict that the sub-Jovian desert becomes less pronounced and opens up at smaller orbital periods around M stars compared to solar-type stars (∼0.7 days versus ∼3 days). We demonstrate that exceptionally low-density sub-Saturns, “super-puffs,” can survive intense hydrodynamic escape to the present day if they are born with even larger atmospheres than they currently harbor; in this picture, Kepler 223 d began with an envelope ∼1.5× the mass of its core and is currently losing its envelope at a rate of ∼2 × 10−3 M ⊕ Myr−1. If the predictions from our theory are confirmed by observations, the core mass function we predict can also serve to constrain core formation theories of gas-rich planets.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Roldao da Rocha

AbstractGravitational decoupled compact polytropic hybrid stars are here addressed in generalized Horndeski scalar-tensor gravity. Additional physical properties of hybrid stars are scrutinized and discussed in the gravitational decoupling setup. The asymptotic value of the mass function, the compactness, and the effective radius of gravitational decoupled hybrid stars are studied for both cases of a bosonic and a fermionic prevalent core. These quantities are presented and discussed as functions of Horndeski parameters, the decoupling parameter, the adiabatic index, and the polytropic constant. Important corrections to general relativity and generalized Horndeski scalar-tensor gravity, induced by the gravitational decoupling, comply with available observational data. Particular cases involving white dwarfs, boson stellar configurations, neutron stars, and Einstein–Klein–Gordon solutions, formulated in the gravitational decoupling context, are also scrutinized.


2022 ◽  
Vol 924 (1) ◽  
pp. 39
Author(s):  
Ajit Kumar Mehta ◽  
Alessandra Buonanno ◽  
Jonathan Gair ◽  
M. Coleman Miller ◽  
Ebraheem Farag ◽  
...  

Abstract Using ground-based gravitational-wave detectors, we probe the mass function of intermediate-mass black holes (IMBHs) wherein we also include BHs in the upper mass gap at ∼60–130 M ⊙. Employing the projected sensitivity of the upcoming LIGO and Virgo fourth observing run (O4), we perform Bayesian analysis on quasi-circular nonprecessing, spinning IMBH binaries (IMBHBs) with total masses 50–500 M ⊙, mass ratios 1.25, 4, and 10, and dimensionless spins up to 0.95, and estimate the precision with which the source-frame parameters can be measured. We find that, at 2σ, the mass of the heavier component of IMBHBs can be constrained with an uncertainty of ∼10%–40% at a signal-to-noise ratio of 20. Focusing on the stellar-mass gap with new tabulations of the 12C(α, γ)16O reaction rate and its uncertainties, we evolve massive helium core stars using MESA to establish the lower and upper edges of the mass gap as ≃ 59 − 13 + 34 M ⊙ and ≃ 139 − 14 + 30 M ⊙ respectively, where the error bars give the mass range that follows from the ±3σ uncertainty in the 12C(α, γ)16O nuclear reaction rate. We find that high resolution of the tabulated reaction rate and fine temporal resolution are necessary to resolve the peak of the BH mass spectrum. We then study IMBHBs with components lying in the mass gap and show that the O4 run will be able to robustly identify most such systems. Finally, we reanalyze GW190521 with a state-of-the-art aligned-spin waveform model, finding that the primary mass lies in the mass gap with 90% credibility.


2021 ◽  
Vol 33 (6) ◽  
pp. 217-225
Author(s):  
Uk-Jae Lee ◽  
Dong-Hui Ko ◽  
Ji-Young Kim ◽  
Hong-Yeon Cho

In this study, wave spectrum data were calculated using the water surface elevation data observed at 5Hz intervals from the HeMOSU-2 meteorological tower installed on the west coast of Korea, and wave parameters were estimated using wave spectrum data. For all significant wave height ranges, the peak enhancement parameter (γ opt ) of the JONSWAP spectrum and the scale parameter (α) and shape parameter (β) of the modify BM spectrum were estimated based on the observed spectrum, and the distribution of each parameter was confirmed. As a result of the analysis, the peak enhancement parameter (γ opt ) of the JONSWAP spectrum was calculated to be 1.27, which is very low compared to the previously proposed 3.3. And in the range of all significant wave heights, the distribution of the peak enhancement parameter (γ opt ) was shown as a combined distribution of probability mass function (PMF) and probability density function (PDF). In addition, the scale parameter (α) and shape parameter (β) of the modify BM spectrum were estimated to be [0.245, β1.278], which are lower than the existing [0.300, -1.098], and the result of the linear correlation analysis between the two parameters was β = =3.86α.


2021 ◽  
Vol 12 (1) ◽  
pp. 43
Author(s):  
Jesús Pastor ◽  
Lorena Vega-Zelaya ◽  
Elena Martín-Abad

Deep brain stimulation (DBS) requires a precise localization, which is especially difficult at the hypothalamus, because it is usually performed in anesthetized patients. We aimed to characterize the neurophysiological properties posteromedial hypothalamus (PMH), identified by the best neurophysiological response to electrical stimulation. We obtained microelectrode recordings from four patients with intractable aggressivity operated under general anesthesia. We pooled data from 1.5 mm at PMH, 1.5 mm upper (uPMH) and 1.5 mm lower (lPMH). We analyzed 178 units, characterized by the mean action potential (mAP). Only 11% were negative. We identified the next types of units: P1N1 (30.9%), N1P1N2 (29.8%), P1P2N1 (16.3%), N1P1 and N1N2P1 (6.2%) and P1N1P2 (5.0%). Besides, atypical action potentials (amAP) were recorded in 11.8%. PMH was highly different in cell composition from uPMH and lPMH, exhibiting also a higher percentage of amAP. Different kinds of cells shared similar features for the three hypothalamic regions. Although features for discharge pattern did not show region specificity, the probability mass function of inter-spike interval were different for all the three regions. Comparison of the same kind of mAP with thalamic neurons previously published demonstrate that most of cells are different for derivatives, amplitude and/or duration of repolarization and depolarization phases and also for the first phase, demonstrating a highly specificity for both brain centers. Therefore, the different properties described for PMH can be used to positively refine targeting, even under general anesthesia. Besides, we describe by first time the presence of atypical extracellular action potentials.


Author(s):  
M. Reggiani ◽  
A. Rainot ◽  
H. Sana ◽  
L. A. Almeida ◽  
S. Caballero-Nieves ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Ias Sri Wahyuni ◽  
Rachid Sabre

In this article, we give a new method of multi-focus fusion images based on Dempster-Shafer theory using local variability (DST-LV). Indeed, the method takes into account the variability of observations of neighbouring pixels at the point studied. At each pixel, the method exploits the quadratic distance between the value of the pixel I (x, y) of the point studied and the value of all pixels which belong to its neighbourhood. Local variability is used to determine the mass function. In this work, two classes of Dempster-Shafer theory are considered: the fuzzy part and the focused part. We show that our method gives the significant and better result by comparing it to other methods.


Sign in / Sign up

Export Citation Format

Share Document