scholarly journals Pulsar Timing Array Constraints on the Merger Timescale of Subparsec Supermassive Black Hole Binary Candidates

2020 ◽  
Vol 900 (2) ◽  
pp. L42
Author(s):  
Khai Nguyen ◽  
Tamara Bogdanović ◽  
Jessie C. Runnoe ◽  
Stephen R. Taylor ◽  
Alberto Sesana ◽  
...  
2018 ◽  
Vol 856 (1) ◽  
pp. 42 ◽  
Author(s):  
Alberto Sesana ◽  
Zoltán Haiman ◽  
Bence Kocsis ◽  
Luke Zoltan Kelley

2019 ◽  
Vol 488 (1) ◽  
pp. 401-418 ◽  
Author(s):  
Siyuan Chen ◽  
Alberto Sesana ◽  
Christopher J Conselice

ABSTRACT We present an analytic model to describe the supermassive black hole binary (SMBHB) merger rate in the Universe with astrophysical observables: galaxy stellar mass function, pair fraction, merger time-scale, and black hole–host galaxy relations. We construct observational priors and compute the allowed range of the characteristic spectrum hc of the gravitational wave background (GWB) to be 10−16 < hc < 10−15 at a frequency of f = 1 yr−1. We exploit our parametrization to tackle the problem of astrophysical inference from pulsar timing array (PTA) observations. We simulate a series of upper limits and detections and use a nested sampling algorithm to explore the parameter space. Corroborating previous results, we find that the current PTA non-detection does not place significant constraints on any observables; however, either future upper limits or detections will significantly enhance our knowledge of the SMBHB population. If a GWB is not detected at a level of hc(f = 1 yr−1) = 10−17, our current understanding of galaxy and SMBHB mergers is disfavoured at a 5σ level, indicating a combination of severe binary stalling, overestimating of the SMBH–host galaxy relations, and extreme dynamical properties of merging SMBHBs. Conversely, future detections of a Square Kilometre Array (SKA)-type instrument will allow to constrain the normalization of the SMBHB merger rate in the Universe, the time between galaxy pairing and SMBHB merging, the normalization of the SMBH–host galaxy relations and the dynamical binary properties, including their eccentricity and density of stellar environment.


2017 ◽  
Vol 13 (S338) ◽  
pp. 46-52
Author(s):  
Tingting Liu ◽  
Suvi Gezari

AbstractWe conducted a systematic search for periodically varying quasars, which are predicted manifestations of sub-pc supermassive black hole binaries (SMBHBs), in the Pan-STARRS1 Medium Deep Survey (PS1 MDS). Since the normal variability of quasars can also mimic periodicity over a small number of cycles, we have extended the temporal baseline by monitoring the candidates with the Discovery Channel Telescope and the Las Cumbres Observatory telescopes. We have also adopted a more rigorous method to evaluate the significance of the periodic candidates, by considering in the light curves a “red noise” background modeled as the Damped Random Walk process. While none of the candidates can be resolved by the current pulsar timing arrays (PTAs) as individual gravitational wave sources, the Large Synoptic Survey Telescope is capable of finding more periodic candidates, some of which are likely to be detected by the PTA experiment with the Square Kilometre Array.


Sign in / Sign up

Export Citation Format

Share Document