CaMKII mediates myocardial ischemia/reperfusion injury‑induced contracture in isolated rat heart

Author(s):  
Ling‑Heng Kong ◽  
Feng‑Mei Xiong ◽  
Xing‑Li Su ◽  
Na Sun ◽  
Jing‑Jun Zhou ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Xin Qiao ◽  
Jinjin Xu ◽  
Qing-Jun Yang ◽  
Yun Du ◽  
Shaoqing Lei ◽  
...  

In this paper, we concluded that transient acidosis reperfusion conferred cardioprotection against myocardial ischemia reperfusion injury in isolated rat hearts through activating PI3K-Akt-eNOS pathway.


2004 ◽  
Vol 82 (6) ◽  
pp. 402-408 ◽  
Author(s):  
Yong-Sheng Ke ◽  
He-Gui Wang ◽  
De-Guo Wang ◽  
Gen-Bao Zhang

Myocardial ischemia reperfusion results in an increase in intracellular sodium concentration, which secondarily increases intracellular calcium via Na+-Ca2+ exchange, resulting in cellular injury. Endoxin is an endogenous medium of digitalis receptor and can remarkably inhibit Na+/K+-ATPase activity. Although the level of plasma endoxin is significantly higher during myocardial ischemia, its practical significance is unclear. This research is to investigate whether endoxin is one of important factors involved in myocardial ischemia reperfusion injury. Ischemia reperfusion injury was induced by 30 min of global ischemia and 30 min of reperfusion in isolated rat hearts. Heart rate (HR), left ventricular developed pressure (LVDP), and its first derivative (±dp/dtmax) were recorded. The endoxin contents, intramitochondrial Ca2+ contents, and the Na+/K+-ATPase activity in myocardial tissues were measured. Myocardial damages were evaluated by electron microscopy. The endoxin and intramitochondrial Ca2+ contents in myocardial tissues were remarkably higher, myocardial membrane ATPase activity was remarkably lower, the cardiac function was significantly deteriorated, and myocardial morphological damages were severe in myocardial ischemia reperfusion group vs. control. Anti-digoxin antiserum (10, 30 mg/kg) caused a significant improvement in cardiac function (LVDP and ±dp/dtmax), Na+/K+-ATPase activity, and myocardial morphology, and caused a reduction of endoxin and intramitochondrial Ca2+ contents in myocardial tissues. In the present study, the endoxin antagonist, anti-digoxin antiserum, protected the myocardium against the damages induced by ischemia reperfusion in isolated rat hearts. The results suggest that endoxin might be one of main factors mediating myocardial ischemia reperfusion injury.Key words: endoxin, anti-digoxin antiserum, myocardial reperfusion injury, morphological evaluation, Na+/K+-exchanging ATPase.


Sign in / Sign up

Export Citation Format

Share Document