Mixed Mode Crack Initiation and Growth in Notched Semi-circular Specimens: Three Dimensional Finite Element Analysis

2012 ◽  
Vol 4 (2) ◽  
pp. 34-44 ◽  
Author(s):  
H.E.M. Sallam ◽  
A.A. Abd-Elhady
Author(s):  
Mark Cohen ◽  
Xin Wang

In this paper, extensive three-dimensional finite element analysis is conducted to study the asymmetric four-point shear (AFPS) specimen: a widely used mixed mode I/II fracture test specimen. Complete solutions of fracture mechanics parameters KI, KII, KIII, T11, and T33 have been obtained for a wide range of a/W and t/W geometry combinations. It is demonstrated that the thickness of the specimen has a significant effect on the variation of fracture parameter values. Their effects on crack tip plastic zone are also investigated. The results presented here will be very useful for the toughness testing of materials under mixed-mode loading conditions.


Author(s):  
Zuo Sun ◽  
David A. Dillard

A three-dimensional nonlinear finite element analysis model is presented to study mixed-mode interfacial delamination for a pull-off test consisting of a thin film strip debonded from a glass substrate. Since the strain energy release rates of all three modes (Mode I, Mode II, and Mode III) and the mode mixities vary along the width of the debond front, prediction of the in-situ shape of the debond front remains an interesting and challenging topic. A cohesive zone model is incorporated into the three-dimensional finite element model to predict the interfacial crack propagation profile for the film deformation regime ranging from bending plate to stretching membrane. This three-dimensional finite element model is found to provide additional insights for interfacial delamination for the pull-off test.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Sign in / Sign up

Export Citation Format

Share Document