Volume 3: Design and Manufacturing
Latest Publications


TOTAL DOCUMENTS

91
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Published By ASMEDC

0791842975

Author(s):  
Eyyup Aras ◽  
Derek Yip-Hoi

Modeling the milling process requires cutter/workpiece engagement (CWE) geometry in order to predict cutting forces. The calculation of these engagements is challenging due to the complicated and changing intersection geometry that occurs between the cutter and the in-process workpiece. This geometry defines the instantaneous intersection boundary between the cutting tool and the in-process workpiece at each location along a tool path. This paper presents components of a robust and efficient geometric modeling methodology for finding CWEs generated during 3-axis machining of surfaces using a range of different types of cutting tool geometries. A mapping technique has been developed that transforms a polyhedral model of the removal volume from Euclidean space to a parametric space defined by location along the tool path, engagement angle and the depth-of-cut. As a result, intersection operations are reduced to first order plane-plane intersections. This approach reduces the complexity of the cutter/workpiece intersections and also eliminates robustness problems found in standard polyhedral modeling and improves accuracy over the Z-buffer technique. The CWEs extracted from this method are used as input to a force prediction model that determines the cutting forces experienced during the milling operation. The reported method has been implemented and tested using a combination of commercial applications. This paper highlights ongoing collaborative research into developing a Virtual Machining System.


Author(s):  
N. G. Patil ◽  
P. K. Brahmankar ◽  
L. G. Navale

Non-traditional process like wire electro-discharge machining (WEDM) is found to show a promise for machining metal matrix composites (MMCs). However, the machining information for the difficult-to-machine particle-reinforced material is inadequate. This paper is focused on experimental investigation to examine the effect of electrical as well as nonelectrical machining parameters on performance in wire electro-discharge machining of metal matrix composites (Al/Al2O3p). Taguchi orthogonal array was used to study the effect of combination of reinforcement, current, pulse on-time, off-time, servo reference voltage, maximum feed speed, wire speed, flushing pressure and wire tension on kerf width and cutting speed. Reinforcement percentage, current, on-time was found to have significant effect on cutting rate and kerf width. The optimum machining parameter combinations were obtained for cutting speed and kerf width separately.


Author(s):  
W. Ferry ◽  
Y. Altintas

Jet engine impeller blades are flank-milled with tapered, helical, ball-end mills on five-axis machining centers. The impellers are made from difficult-to-cut titanium or nickel alloys, and the blades must be machined within tight tolerances. As a consequence, deflections of the tool and flexible workpiece can jeopardize the precision of the impellers during milling. This work is the first of a two part paper on cutting force prediction and feed optimization for the five-axis flank milling of an impeller. In Part I, a mathematical model for predicting cutting forces is presented for five-axis machining with tapered, helical, ball-end mills with variable pitch and serrated flutes. The cutter is divided axially into a number of differential elements, each with its own feed coordinate system due to five-axis motion. At each element, the total velocity due to translation and rotation is split into horizontal and vertical feed components, which are used to calculate total chip thickness along the cutting edge. The cutting forces for each element are calculated by transforming friction angle, shear stress and shear angle from an orthogonal cutting database to the oblique cutting plane. The distributed cutting load is digitally summed to obtain the total forces acting on the cutter and blade. The model can be used for general five-axis flank milling processes, and supports a variety of cutting tools. Predicted cutting force measurements are shown to be in reasonable agreement with those collected during a roughing operation on a prototype integrally bladed rotor (IBR).


Author(s):  
Valery Ponyavin ◽  
Taha Mohamed ◽  
Mohamed Trabia ◽  
Yitung Chen ◽  
Anthony E. Hechanova

Ceramics are suitable for use in high temperature applications as well as corrosive environment. These characteristics were the reason behind selection silicone carbide for a high temperature heat exchanger and chemical decomposer, which is a part of the Sulphur-Iodine (SI) thermo-chemical cycle. The heat exchanger is expected to operate in the range of 950°C. The proposed design is manufactured using fused ceramic layers that allow creation of micro-channels with dimensions below one millimeter. A proper design of the heat exchanges requires considering possibilities of failure due to stresses under both steady state and transient conditions. Temperature gradients within the heat exchanger ceramic components induce thermal stresses that dominate other stresses. A three-dimensional computational model is developed to investigate the fluid flow, heat transfer and stresses in the decomposer. Temperature distribution in the solid is imported to finite element software and used with pressure loads for stress analysis. The stress results are used to calculate probability of failure based on Weibull failure criteria. Earlier analysis showed that stress results at steady state operating conditions are satisfactory. The focus of this paper is to consider stresses that are induced during transient scenarios. In particular, the cases of startup and shutdown of the heat exchanger are considered. The paper presents an evaluation of the stresses in these two cases.


Author(s):  
Yi-Pei Shih ◽  
Zhang-Hua Fong

Because the contact bearings of spiral bevel and hypoid gears are highly sensitive to tooth flank geometry, it is desirable to reduce the flank deviations caused by machine errors and heat treatment deformation. Several methods already proposed for flank correction are based on the cutter parameters, machine settings, and kinematical flank motion parameters of a cradle-type universal generator, which are modulated according to the measured flank topographic deviations. However, because of the recently developed six-axis Cartesian-type computer numerical control (CNC) hypoid generator, both face-milling and face-hobbing cutting methods can be implemented on the same machine using a corresponding cutter head and NC code. Nevertheless, the machine settings and flank corrections of most commercial Cartesian-type machines are still translated from the virtual cradle-type universal hypoid generator. In contrast, this paper proposes a flank-correction methodology derived directly from the six-axis Cartesian-type CNC hypoid generator in which high-order correction is easily achieved through direct control of the CNC axis motion. The validity of this flank correction method is demonstrated using a numerical example of Oerlikon Spirac face-hobbing hypoid gears made by the proposed Cartesian-type CNC machine.


Author(s):  
Spiridon S. Cretu ◽  
Marcelin I. Benchea ◽  
Ovidiu S. Cretu

The fatigue life tests carried out on two groups of ball bearings confirm the positive influence of the compressive residual stresses induced by a previous loading in the elastic-plastic domain. The values of residual stresses are numerically evaluated by employing a three-dimensional strain deformation analysis model. The model is developed in the frame of the incremental theory of plasticity by using the von Mises yield criterion and Prandtl-Reuss equations. To consider the material behaviour the Ramberg-Osgood stress-strain equation is involved and a nonlinear equation is considered to model the influence of the retained austenite. To attain the final load of each loading cycle the two bodies are brought into contact incrementally, so that for each new load increment the new pressure distribution is obtained as the solution of a constrained system of equation. Conjugate gradients method in conjunction with discrete convolution fast Fourier transform is used to solve the huge system of equations. Both the new contact geometry and residual stresses distributions, are further considered as initial values for the next loading cycle, the incremental technique being reiterated. The cyclic evaluation process of both plastic strains and residual stresses is performed until the material shakedowns. Comparisons of the computed residual stresses and deformed profiles with corresponding measured values reveal a good agreement and validate the analysis model. The von Mises equivalent stress, able to include both elastic and residual stresses, is considered in Ioannides-Harris rolling contact fatigue model to obtain theoretical lives of the ball bearings groups. The theoretical analysis reveals also greater fatigue lives for the ball bearings groups with induced residual stresses than the fatigue lives of the group without induced residual stresses.


Author(s):  
Manohar S. Konchady ◽  
Sergey Yarmolenko ◽  
Devdas M. Pai ◽  
Jag Sankar

Multilayer and superlattice coatings of TiN/CrN coating are deposited on Si(100) substrate at different modulation wavelength by reactive unbalanced magnetron sputtering and characterized using X-ray diffraction, nanoindentation, AFM. Nano-roughness of films is in good correlation with hardness and modulus and this effect has been used for optimization of deposition parameters. Preliminary results have shown slightly better mechanical properties for multilayered TiN/CrN coatings compared to single layer TiN and CrN coatings. The XRD results have shown a preferred orientation in <100> direction for TiN/CrN multilayer coatings at modulation wavelengths below 80 nm. At 100 nm layer thickness, TiN revealed small amount of crystals with <111> orientation and their content significantly increases with increase in layer thickness while CrN layers only show preferred orientation of <100>. Multilayered coatings exhibit better mechanical properties due to presence of large number of interfaces which act as barrier to dislocations. Fracture toughness and tribological properties of these coatings are also expected to show significant improvement and the investigation in this area is under progress.


Author(s):  
Kuang-Ting Hsiao

Resin Transfer Molding (RTM) is an advanced process to manufacture high quality thermoset polymeric composites. The quality of the composite depends on the resin infusion stage and the cure stage during the RTM process. The resin curing is a complex exothermic process which involves resin mechanical property evolution, resin volume shrinkage, thermal expansion, heat transfer, and chemical reaction. Since the fibers and resin have many differences in their physical properties, the composite cure stage inevitably introduces the undesired residual stress to the composite parts. As the residual stress could sometimes generate local matrix failure or degrade the performance of the composite, it is important to model and minimize the residual stress. This paper presents a model to predict the residual stress development during the composite cure process. By slightly disturbing the manufacturing parameters such as the mold heating cycle and the cure kinetics of polymer, the variations of residual stress development during the RTM process can be modeled and compared. A parametric uncertainty study of the residual stress development in the polymeric composite manufactured with RTM will be performed and discussed.


Author(s):  
Sergey Yarmolenko ◽  
Devendra Ray ◽  
Devdas Pai ◽  
Jag Sankar

Phase transitions and CTE of 10mol%Sc2O3-1mol%CeO2-ZrO2 ceramics sintered from two commercial powders produced by Praxair Surface Technologies, USA and DKKK, Japan are studied. Morphology of powders and grain structure of ceramics were studied by SEM and AFM. Ceramics produced from Praxair powder exist in cubic phase while DKKK-based ceramics exhibit slow phase transformation from cubic to rhombohedral (β) phase at temperatures 350–400°C. c-β Phase transition temperature is 440°C obtained by high temperature x-ray diffractometry (HTXRD) and differential scanning calorimetry. Coefficients of thermal expansion of cubic and β-phases were calculated from temperature dependence of lattice parameters obtained by HTXRD in the temperature range of 25–800°C. These results can be further used for the optimal design of SOFC layered structures as well as for determination of their reliability and durability under operational conditions.


Author(s):  
Kavic Rason ◽  
Brad Kinsey

Geometrically complex, high aspect ratio microstructures and limited aspect ratio nanostructures have been successfully fabricated in supercooled Bulk Metallic Glass (BMG) substrates by molding against patterned Silicon and Silicon dioxide substrates. However, demand exists for similar metallic substrates with high aspect ratio, nanoscale features. Van Der Waals based interfacial energies between the supercooled liquid BMG and the Silicon cavity represent a substantial obstacle to the direct scaling of the molding process to the nanoscale. In an effort to investigate these effects, experiments were conducted using molds of various compositions: Silicon, SiO2 and SiO2 coated with Gold. The Gold coating failed to impact molding performance due to the thin layer deposited. However, drastically superior results were obtained by using a Silicon mold because of the variation in interfacial interaction between the BMG and the mold material. In addition, a theoretical model to predict achievable aspect ratio is presented and was found to be in qualitative agreement with experimental results. Finally, a value for the surface tension of Viterloy-1b within it’s supercooled liquid state was deduced from experimental data.


Sign in / Sign up

Export Citation Format

Share Document