scholarly journals Niederreiter cryptosystems using quasi-cyclic codes that resist quantum Fourier sampling

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Upendra Kapshikar ◽  
Ayan Mahalanobis

<p style='text-indent:20px;'>McEliece and Niederreiter cryptosystems are robust and versatile cryptosystems. These cryptosystems work with many linear error-correcting codes. They are popular these days because they can be quantum-secure. In this paper, we study the Niederreiter cryptosystem using non-binary quasi-cyclic codes. We prove, if these quasi-cyclic codes satisfy certain conditions, the corresponding Niederreiter cryptosystem is resistant to the hidden subgroup problem using weak quantum Fourier sampling. Though our work uses the weak Fourier sampling, we argue that its conclusions should remain valid for the strong Fourier sampling as well.</p>


2008 ◽  
Vol 06 (06) ◽  
pp. 1263-1269 ◽  
Author(s):  
JIANFA QIAN ◽  
WENPING MA ◽  
XINMEI WANG

Quasi-cyclic codes form a generalization of cyclic codes, and contain a large number of record breaking codes. In this paper, we provide a method for constructing self-orthogonal quasi-cyclic codes, and obtain a large number of new quantum quasi-cyclic codes by CSS construction.



2016 ◽  
Vol 14 (01) ◽  
pp. 1650012 ◽  
Author(s):  
Abdullah Dertli ◽  
Yasemin Cengellenmis ◽  
Senol Eren

In this paper, we study the structure of cyclic, quasi-cyclic codes and their skew codes over the finite ring [Formula: see text], [Formula: see text] for [Formula: see text]. The Gray images of cyclic, quasi-cyclic, skew cyclic, skew quasi-cyclic codes over [Formula: see text] are obtained. A necessary and sufficient condition for cyclic code over [Formula: see text] that contains its dual has been given. The parameters of quantum error correcting codes are obtained from cyclic codes over [Formula: see text].



2015 ◽  
Vol 15 (3&4) ◽  
pp. 260-294
Author(s):  
Hang Dinh ◽  
Cristopher Moore ◽  
Alexander Russell

Quantum computers can break the RSA, El Gamal, and elliptic curve public-key cryptosystems, as they can efficiently factor integers and extract discrete logarithms. The power of such quantum attacks lies in \emph{quantum Fourier sampling}, an algorithmic paradigm based on generating and measuring coset states. %This motivates the investigation of the power or limitations of quantum Fourier sampling, especially in attacking candidates for ``post-quantum'' cryptosystems -- classical cryptosystems that can be implemented with today's computers but will remain secure even in the presence of quantum attacks. In this article we extend previous negative results of quantum Fourier sampling for Graph Isomorphism, which corresponds to hidden subgroups of order two (over S_n, to several cases corresponding to larger hidden subgroups. For one case, we strengthen some results of Kempe, Pyber, and Shalev on the Hidden Subgroup Problem over the symmetric group. In another case, we show the failure of quantum Fourier sampling on the Hidden Subgroup Problem over the general linear group GL_2(\FF_q). The most important case corresponds to Code Equivalence, the problem of determining whether two given linear codes are equivalent to each other up to a permutation of the coordinates. Our results suggest that for many codes of interest---including generalized Reed Solomon codes, alternant codes, and Reed-Muller codes---solving these instances of Code Equivalence via Fourier sampling appears to be out of reach of current families of quantum algorithms.



2021 ◽  
Vol 336 ◽  
pp. 04001
Author(s):  
Yu Yao ◽  
Yuena Ma ◽  
Husheng Li ◽  
Jingjie Lv

In this paper, we take advantage of a class of one-generator generalized quasi-cyclic (GQC) codes of index 2 to construct quantum error-correcting codes. By studying the form of Hermitian dual codes and their algebraic structure, we propose a sufficient condition for self-orthogonality of GQC codes with Hermitian inner product. By comparison, the quantum codes we constructed have better parameters than known codes.



2016 ◽  
Vol 08 (02) ◽  
pp. 1650036 ◽  
Author(s):  
Abdullah Dertli ◽  
Yasemin Cengellenmis ◽  
Senol Eren

Some results are generalized on linear codes over [Formula: see text] in [15] to the ring [Formula: see text], where [Formula: see text] is an odd prime number. The Gray images of cyclic and quasi-cyclic codes over [Formula: see text] are obtained. The parameters of quantum error correcting codes are obtained from negacyclic codes over [Formula: see text]. A nontrivial automorphism [Formula: see text] on the ring [Formula: see text] is determined. By using this, the skew cyclic, skew quasi-cyclic, skew constacyclic codes over [Formula: see text] are introduced. The number of distinct skew cyclic codes over [Formula: see text] is given. The Gray images of skew codes over [Formula: see text] are obtained. The quasi-constacyclic and skew quasi-constacyclic codes over [Formula: see text] are introduced. MacWilliams identities of linear codes over [Formula: see text] are given.



Filomat ◽  
2019 ◽  
Vol 33 (8) ◽  
pp. 2237-2248 ◽  
Author(s):  
Habibul Islam ◽  
Om Prakash

In this paper, we study (1 + 2u + 2v)-constacyclic and skew (1 + 2u + 2v)-constacyclic codes over the ring Z4 + uZ4 + vZ4 + uvZ4 where u2 = v2 = 0,uv = vu. We define some new Gray maps and show that the Gray images of (1 + 2u + 2v)-constacyclic and skew (1 + 2u + 2v)-constacyclic codes are cyclic, quasi-cyclic and permutation equivalent to quasi-cyclic codes over Z4. Further, we determine the structure of (1 + 2u + 2v)-constacyclic codes of odd length n.





2014 ◽  
Vol 28 (06) ◽  
pp. 1450017 ◽  
Author(s):  
RUIHU LI ◽  
GEN XU ◽  
LUOBIN GUO

In this paper, we discuss two problems on asymmetric quantum error-correcting codes (AQECCs). The first one is on the construction of a [[12, 1, 5/3]]2 asymmetric quantum code, we show an impure [[12, 1, 5/3 ]]2 exists. The second one is on the construction of AQECCs from binary cyclic codes, we construct many families of new asymmetric quantum codes with dz> δ max +1 from binary primitive cyclic codes of length n = 2m-1, where δ max = 2⌈m/2⌉-1 is the maximal designed distance of dual containing narrow sense BCH code of length n = 2m-1. A number of known codes are special cases of the codes given here. Some of these AQECCs have parameters better than the ones available in the literature.



Sign in / Sign up

Export Citation Format

Share Document