On the linear codes over the ring Rp

2016 ◽  
Vol 08 (02) ◽  
pp. 1650036 ◽  
Author(s):  
Abdullah Dertli ◽  
Yasemin Cengellenmis ◽  
Senol Eren

Some results are generalized on linear codes over [Formula: see text] in [15] to the ring [Formula: see text], where [Formula: see text] is an odd prime number. The Gray images of cyclic and quasi-cyclic codes over [Formula: see text] are obtained. The parameters of quantum error correcting codes are obtained from negacyclic codes over [Formula: see text]. A nontrivial automorphism [Formula: see text] on the ring [Formula: see text] is determined. By using this, the skew cyclic, skew quasi-cyclic, skew constacyclic codes over [Formula: see text] are introduced. The number of distinct skew cyclic codes over [Formula: see text] is given. The Gray images of skew codes over [Formula: see text] are obtained. The quasi-constacyclic and skew quasi-constacyclic codes over [Formula: see text] are introduced. MacWilliams identities of linear codes over [Formula: see text] are given.

2016 ◽  
Vol 14 (01) ◽  
pp. 1650012 ◽  
Author(s):  
Abdullah Dertli ◽  
Yasemin Cengellenmis ◽  
Senol Eren

In this paper, we study the structure of cyclic, quasi-cyclic codes and their skew codes over the finite ring [Formula: see text], [Formula: see text] for [Formula: see text]. The Gray images of cyclic, quasi-cyclic, skew cyclic, skew quasi-cyclic codes over [Formula: see text] are obtained. A necessary and sufficient condition for cyclic code over [Formula: see text] that contains its dual has been given. The parameters of quantum error correcting codes are obtained from cyclic codes over [Formula: see text].


2008 ◽  
Vol 06 (06) ◽  
pp. 1263-1269 ◽  
Author(s):  
JIANFA QIAN ◽  
WENPING MA ◽  
XINMEI WANG

Quasi-cyclic codes form a generalization of cyclic codes, and contain a large number of record breaking codes. In this paper, we provide a method for constructing self-orthogonal quasi-cyclic codes, and obtain a large number of new quantum quasi-cyclic codes by CSS construction.


2021 ◽  
Vol 336 ◽  
pp. 04001
Author(s):  
Yu Yao ◽  
Yuena Ma ◽  
Husheng Li ◽  
Jingjie Lv

In this paper, we take advantage of a class of one-generator generalized quasi-cyclic (GQC) codes of index 2 to construct quantum error-correcting codes. By studying the form of Hermitian dual codes and their algebraic structure, we propose a sufficient condition for self-orthogonality of GQC codes with Hermitian inner product. By comparison, the quantum codes we constructed have better parameters than known codes.


Filomat ◽  
2019 ◽  
Vol 33 (8) ◽  
pp. 2237-2248 ◽  
Author(s):  
Habibul Islam ◽  
Om Prakash

In this paper, we study (1 + 2u + 2v)-constacyclic and skew (1 + 2u + 2v)-constacyclic codes over the ring Z4 + uZ4 + vZ4 + uvZ4 where u2 = v2 = 0,uv = vu. We define some new Gray maps and show that the Gray images of (1 + 2u + 2v)-constacyclic and skew (1 + 2u + 2v)-constacyclic codes are cyclic, quasi-cyclic and permutation equivalent to quasi-cyclic codes over Z4. Further, we determine the structure of (1 + 2u + 2v)-constacyclic codes of odd length n.


2014 ◽  
Vol 28 (06) ◽  
pp. 1450017 ◽  
Author(s):  
RUIHU LI ◽  
GEN XU ◽  
LUOBIN GUO

In this paper, we discuss two problems on asymmetric quantum error-correcting codes (AQECCs). The first one is on the construction of a [[12, 1, 5/3]]2 asymmetric quantum code, we show an impure [[12, 1, 5/3 ]]2 exists. The second one is on the construction of AQECCs from binary cyclic codes, we construct many families of new asymmetric quantum codes with dz> δ max +1 from binary primitive cyclic codes of length n = 2m-1, where δ max = 2⌈m/2⌉-1 is the maximal designed distance of dual containing narrow sense BCH code of length n = 2m-1. A number of known codes are special cases of the codes given here. Some of these AQECCs have parameters better than the ones available in the literature.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 15
Author(s):  
Lucky Galvez ◽  
Jon-Lark Kim

Practically good error-correcting codes should have good parameters and efficient decoding algorithms. Some algebraically defined good codes, such as cyclic codes, Reed–Solomon codes, and Reed–Muller codes, have nice decoding algorithms. However, many optimal linear codes do not have an efficient decoding algorithm except for the general syndrome decoding which requires a lot of memory. Therefore, a natural question to ask is which optimal linear codes have an efficient decoding. We show that two binary optimal [ 36 , 19 , 8 ] linear codes and two binary optimal [ 40 , 22 , 8 ] codes have an efficient decoding algorithm. There was no known efficient decoding algorithm for the binary optimal [ 36 , 19 , 8 ] and [ 40 , 22 , 8 ] codes. We project them onto the much shorter length linear [ 9 , 5 , 4 ] and [ 10 , 6 , 4 ] codes over G F ( 4 ) , respectively. This decoding algorithm, called projection decoding, can correct errors of weight up to 3. These [ 36 , 19 , 8 ] and [ 40 , 22 , 8 ] codes respectively have more codewords than any optimal self-dual [ 36 , 18 , 8 ] and [ 40 , 20 , 8 ] codes for given length and minimum weight, implying that these codes are more practical.


2020 ◽  
Vol 27 (04) ◽  
pp. 703-712
Author(s):  
Hai Q. Dinh ◽  
Bac T. Nguyen ◽  
Songsak Sriboonchitta

We study skew cyclic codes over a class of rings [Formula: see text], where each [Formula: see text] [Formula: see text] is a finite field. We prove that a skew cyclic code of arbitrary length over R is equivalent to either a usual cyclic code or a quasi-cyclic code over R. Moreover, we discuss possible extension of our results in the more general setting of [Formula: see text]-dual skew constacyclic codes over R, where δR is an automorphism of R.


2014 ◽  
Vol 12 (03) ◽  
pp. 1450015 ◽  
Author(s):  
Liang-Dong Lü ◽  
Ruihu Li

The entanglement-assisted (EA) formalism generalizes the standard stabilizer formalism. All quaternary linear codes can be transformed into entanglement-assisted quantum error correcting codes (EAQECCs) under this formalism. In this work, we discuss construction of EAQECCs from Hermitian non-dual containing primitive Bose–Chaudhuri–Hocquenghem (BCH) codes over the Galois field GF(4). By a careful analysis of the cyclotomic cosets contained in the defining set of a given BCH code, we can determine the optimal number of ebits that needed for constructing EAQECC from this BCH code, rather than calculate the optimal number of ebits from its parity check matrix, and derive a formula for the dimension of this BCH code. These results make it possible to specify parameters of the obtained EAQECCs in terms of the design parameters of BCH codes.


2018 ◽  
Vol 16 (1) ◽  
pp. 490-497
Author(s):  
Xiying Zheng ◽  
Bo Kong

AbstractIn this paper, we study linear codes over ring Rk = 𝔽pm[u1, u2,⋯,uk]/〈$\begin{array}{} u^{2}_{i} \end{array} $ = ui, uiuj = ujui〉 where k ≥ 1 and 1 ≤ i, j ≤ k. We define a Gray map from $\begin{array}{} R_{k}^n\,\,\text{to}\,\,{\mathbb F}_{p^m}^{2^kn} \end{array} $ and give the generator polynomials of constacyclic codes over Rk. We also study the MacWilliams identities of linear codes over Rk.


Sign in / Sign up

Export Citation Format

Share Document