scholarly journals Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation

2013 ◽  
Vol 34 (2) ◽  
pp. 843-867 ◽  
Author(s):  
Shouming Zhou ◽  
Chunlai Mu ◽  
Liangchen Wang
Author(s):  
Jiang Bo Zhou ◽  
Jun De Chen ◽  
Wen Bing Zhang

We first establish the local well-posedness for a weakly dissipative shallow water equation which includes both the weakly dissipative Camassa-Holm equation and the weakly dissipative Degasperis-Procesi equation as its special cases. Then two blow-up results are derived for certain initial profiles. Finally, We study the long time behavior of the solutions.


2011 ◽  
Vol 251 (12) ◽  
pp. 3488-3499 ◽  
Author(s):  
Chunlai Mu ◽  
Shouming Zhou ◽  
Rong Zeng

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Ensil Kang ◽  
Jihoon Lee

Masmoudi (2010) obtained global well-posedness for 2D Maxwell-Navier-Stokes system. In this paper, we reprove global existence of regular solutions to the 2D system by using energy estimates and Brezis-Gallouet inequality. Also we obtain a blow-up criterion for solutions to 3D Maxwell-Navier-Stokes system.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Enzo Vitillaro

<p style='text-indent:20px;'>The aim of this paper is to give global nonexistence and blow–up results for the problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{cases} u_{tt}-\Delta u+P(x,u_t) = f(x,u) \qquad &amp;\text{in $(0,\infty)\times\Omega$,}\\ u = 0 &amp;\text{on $(0,\infty)\times \Gamma_0$,}\\ u_{tt}+\partial_\nu u-\Delta_\Gamma u+Q(x,u_t) = g(x,u)\qquad &amp;\text{on $(0,\infty)\times \Gamma_1$,}\\ u(0,x) = u_0(x),\quad u_t(0,x) = u_1(x) &amp; \text{in $\overline{\Omega}$,} \end{cases} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a bounded open <inline-formula><tex-math id="M2">\begin{document}$ C^1 $\end{document}</tex-math></inline-formula> subset of <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb R}^N $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ N\ge 2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ \Gamma = \partial\Omega $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ (\Gamma_0,\Gamma_1) $\end{document}</tex-math></inline-formula> is a partition of <inline-formula><tex-math id="M7">\begin{document}$ \Gamma $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M8">\begin{document}$ \Gamma_1\not = \emptyset $\end{document}</tex-math></inline-formula> being relatively open in <inline-formula><tex-math id="M9">\begin{document}$ \Gamma $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M10">\begin{document}$ \Delta_\Gamma $\end{document}</tex-math></inline-formula> denotes the Laplace–Beltrami operator on <inline-formula><tex-math id="M11">\begin{document}$ \Gamma $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M12">\begin{document}$ \nu $\end{document}</tex-math></inline-formula> is the outward normal to <inline-formula><tex-math id="M13">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula>, and the terms <inline-formula><tex-math id="M14">\begin{document}$ P $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M15">\begin{document}$ Q $\end{document}</tex-math></inline-formula> represent nonlinear damping terms, while <inline-formula><tex-math id="M16">\begin{document}$ f $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M17">\begin{document}$ g $\end{document}</tex-math></inline-formula> are nonlinear source terms. These results complement the analysis of the problem given by the author in two recent papers, dealing with local and global existence, uniqueness and well–posedness.</p>


2020 ◽  
Vol 9999 (9999) ◽  
pp. 1-20
Author(s):  
Anudeep Kumar Arora ◽  
Svetlana Roudenko ◽  
Kai Yang

In this paper we give a review of the recent progress on the focusing generalized Hartree equation, which is a nonlinear Schrodinger-type equation with the nonlocal nonlinearity, expressed as a convolution with the Riesz potential. We describe the local well-posedness in H1 and Hs settings, discuss the extension to the global existence and scattering, or finite time blow-up. We point out different techniques used to obtain the above results, and then show the numerical investigations of the stable blow-up in the L2 -critical setting. We finish by showing known analytical results about the stable blow-up dynamics in the L2 -critical setting.


Sign in / Sign up

Export Citation Format

Share Document