scholarly journals Corrigendum: A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density

2015 ◽  
Vol 35 (3) ◽  
pp. 1387-1390
Author(s):  
Anthony Suen ◽  
Keyword(s):  
Blow Up ◽  
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Li Li ◽  
Yanping Zhou

Abstract In this work, we consider the density-dependent incompressible inviscid Boussinesq equations in $\mathbb{R}^{N}\ (N\geq 2)$ R N ( N ≥ 2 ) . By using the basic energy method, we first give the a priori estimates of smooth solutions and then get a blow-up criterion. This shows that the maximum norm of the gradient velocity field controls the breakdown of smooth solutions of the density-dependent inviscid Boussinesq equations. Our result extends the known blow-up criteria.


2018 ◽  
Vol 73 (3) ◽  
Author(s):  
Ahmad Mohammad Alghamdi ◽  
Sadek Gala ◽  
Maria Alessandra Ragusa

2019 ◽  
Vol 16 (04) ◽  
pp. 639-661 ◽  
Author(s):  
Zhen Wang ◽  
Xinglong Wu

We establish a well-posedness theory and a blow-up criterion for the Chaplygin gas equations in [Formula: see text] for any dimension [Formula: see text]. First, given [Formula: see text], [Formula: see text], we prove the well-posedness property for solutions [Formula: see text] in the space [Formula: see text] for the Cauchy problem associated with the Chaplygin gas equations, provided the initial density [Formula: see text] is bounded below. We also prove that the solution of the Chaplygin gas equations depends continuously upon its initial data [Formula: see text] in [Formula: see text] if [Formula: see text], and we state a blow-up criterion for the solutions in the classical BMO space. Finally, using Osgood’s modulus of continuity, we establish a refined blow-up criterion of the solutions.


Sign in / Sign up

Export Citation Format

Share Document