chaplygin gas
Recently Published Documents


TOTAL DOCUMENTS

644
(FIVE YEARS 122)

H-INDEX

50
(FIVE YEARS 4)

Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 468
Author(s):  
Andronikos Paliathanasis

We investigate the cosmological evolution for the physical parameters in Weyl integrable gravity in a Friedmann–Lemaître–Robertson–Walker universe with zero spatial curvature. For the matter component, we assume that it is an ideal gas, and of the Chaplygin gas, from the Weyl integrable gravity a scalar field is introduced by a geometric approach which provides an interaction with the matter component.We calculate the stationary points for the field equations and we study their stability properties. Furthermore, we solve the inverse problem for the case of an ideal gas and prove that the gravitational field equations can follow from the variation of a Lagrangian function. Finally, variational symmetries are applied for the construction of analytic and exact solutions.


Author(s):  
P. Thakur

A modified and generalised Chaplygin gas (MCG, [Formula: see text] and GCG, [Formula: see text]) has been separately chosen here as a constituent of the universe. Concept of state finder and Om diagnostics are introduced to track the dark energy in the models. Here, observed Hubble data (OHD) and binned Pantheon data of supernovae are used to determine the best-fit equation-of-state (EoS) parameters of these models and these are compared with the [Formula: see text]CDM model. The best-fit value and expected values of cosmological jerk parameter [Formula: see text], snap parameter [Formula: see text] are determined, which are close to each other. A plot of [Formula: see text] with red-shift, with themselves, as well as with deceleration parameter [Formula: see text], shows the evolution of the universe and its possible future. Variations of [Formula: see text] and EoS parameter [Formula: see text] with red-shift show acceleration–deceleration phase transition in the recent past. Lastly, the state finder pair [Formula: see text] and Om diagnostic have been utilized to discriminate the models.


Author(s):  
Archana Dixit ◽  
Anirudh Pradhan ◽  
Raghavendra Chaubey

In this paper, we investigate the cosmic acceleration and the behavior of dark energy (DE) in the structure of the recently proposed [Formula: see text] gravity theory [G. R. P. Teruel, [Formula: see text] gravity, Eur. Phys. J. C 78 (2018) 660]. In this study, we obtained some fascinating cosmological features that are coherent with observational evidences and the touchstone [Formula: see text]CDM model. To find the deterministic solution, we consider a periodic deceleration parameter [Formula: see text], where [Formula: see text] [M. Shen and L. Zhao, Oscillating quintom model with time periodic varying deceleration parameter, Chin. Phys. Lett. 31 (2014) 010401], which predicts the decelerating and accelerating phases of the universe. The Equation of State (EoS) parameter also supports the idea of DE, which is the dominant component and it is responsible for the universe’s accelerated expansion. Here, we also construct cosmographic parameters, like, [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and studied their evolution in spatially flat [Formula: see text] gravity. We find that these observations are sufficient in comparison with the universe’s physical and kinematic properties and also consistent with ongoing (OHD[Formula: see text][Formula: see text][Formula: see text]JLA) observation. Next, we apply the geometric diagnostics, the state-finder ([Formula: see text]) in [Formula: see text] gravity to discriminate from the [Formula: see text]CDM model. We found that our model lies in quintessence and the Chaplygin Gas region. Finally, the model approaches [Formula: see text]CDM at the present epoch of the universe.


Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 362
Author(s):  
Abdulla Al Mamon ◽  
Vipin Chandra Dubey ◽  
Kazuharu Bamba

We explore a unified model of dark matter and dark energy. This new model is a generalization of the generalized Chaplygin gas model and is known as a new generalized Chaplygin gas (NGCG) model. We study the evolutions of the Hubble parameter and the distance modulus for the model under consideration and the standard ΛCDM model and compare that with the observational datasets. Furthermore, we demonstrate two geometric diagnostics analyses including the statefinder (r,s) and Om(z) to the discriminant NGCG model from the standard ΛCDM model. The trajectories of evolution for (r,s) and Om(z) diagnostic planes are shown to understand the geometrical behavior of the NGCG model by using different observational data points.


Sign in / Sign up

Export Citation Format

Share Document