scholarly journals Large time behavior in a predator-prey system with pursuit-evasion interaction

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Dayong Qi ◽  
Yuanyuan Ke

<p style='text-indent:20px;'>This work considers a pursuit-evasion model</p><p style='text-indent:20px;'><disp-formula><label/><tex-math id="FE1000">\begin{document}$\begin{equation} \left\{ \begin{split} &amp;u_t = \Delta u-\chi\nabla\cdot(u\nabla w)+u(\mu-u+av),\\ &amp;v_t = \Delta v+\xi\nabla\cdot(v\nabla z)+v(\lambda-v-bu),\\ &amp;w_t = \Delta w-w+v,\\ &amp;z_t = \Delta z-z+u\\ \end{split} \right. \ \ \ \ \ (1) \end{equation}$\end{document}</tex-math></disp-formula></p><p style='text-indent:20px;'>with positive parameters <inline-formula><tex-math id="M1">\begin{document}$ \chi $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ \xi $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ \mu $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ a $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ b $\end{document}</tex-math></inline-formula> in a bounded domain <inline-formula><tex-math id="M7">\begin{document}$ \Omega\subset\mathbb{R}^N $\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id="M8">\begin{document}$ N $\end{document}</tex-math></inline-formula> is the dimension of the space) with smooth boundary. We prove that if <inline-formula><tex-math id="M9">\begin{document}$ a&lt;2 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M10">\begin{document}$ \frac{N(2-a)}{2(C_{\frac{N}{2}+1})^{\frac{1}{\frac{N}{2}+1}}(N-2)_+}&gt;\max\{\chi,\xi\} $\end{document}</tex-math></inline-formula>, (1) possesses a global bounded classical solution with a positive constant <inline-formula><tex-math id="M11">\begin{document}$ C_{\frac{N}{2}+1} $\end{document}</tex-math></inline-formula> corresponding to the maximal Sobolev regularity. Moreover, it is shown that if <inline-formula><tex-math id="M12">\begin{document}$ b\mu&lt;\lambda $\end{document}</tex-math></inline-formula>, the solution (<inline-formula><tex-math id="M13">\begin{document}$ u,v,w,z $\end{document}</tex-math></inline-formula>) converges to a spatially homogeneous coexistence state with respect to the norm in <inline-formula><tex-math id="M14">\begin{document}$ L^\infty(\Omega) $\end{document}</tex-math></inline-formula> in the large time limit under some exact smallness conditions on <inline-formula><tex-math id="M15">\begin{document}$ \chi $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M16">\begin{document}$ \xi $\end{document}</tex-math></inline-formula>. If <inline-formula><tex-math id="M17">\begin{document}$ b\mu&gt;\lambda $\end{document}</tex-math></inline-formula>, the solution converges to (<inline-formula><tex-math id="M18">\begin{document}$ \mu,0,0,\mu $\end{document}</tex-math></inline-formula>) with respect to the norm in <inline-formula><tex-math id="M19">\begin{document}$ L^\infty(\Omega) $\end{document}</tex-math></inline-formula> as <inline-formula><tex-math id="M20">\begin{document}$ t\rightarrow \infty $\end{document}</tex-math></inline-formula> under some smallness assumption on <inline-formula><tex-math id="M21">\begin{document}$ \chi $\end{document}</tex-math></inline-formula> with arbitrary <inline-formula><tex-math id="M22">\begin{document}$ \xi $\end{document}</tex-math></inline-formula>.</p>

2017 ◽  
Vol 22 (11) ◽  
pp. 0-0
Author(s):  
Genglin Li ◽  
◽  
Youshan Tao ◽  
Michael Winkler ◽  
◽  
...  

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Chao Liu ◽  
Bin Liu

<p style='text-indent:20px;'>In this paper, we study the prey-predator model with indirect pursuit-evasion interaction defined on a smooth bounded domain with homogeneous Neumann boundary conditions. We obtain the globa existence and boundedness of the classical solution of the model by estimating <inline-formula><tex-math id="M1">\begin{document}$ L^{p} $\end{document}</tex-math></inline-formula>-norm of <inline-formula><tex-math id="M2">\begin{document}$ u $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ v $\end{document}</tex-math></inline-formula>, and we also show the large time behavior and convergence rate of the solution.</p>


2015 ◽  
Vol 26 (02) ◽  
pp. 319-355 ◽  
Author(s):  
Marco Di Francesco ◽  
Simone Fagioli

We consider a two-species system of nonlocal interaction PDEs modeling the swarming dynamics of predators and prey, in which all agents interact through attractive/repulsive forces of gradient type. In order to model the predator–prey interaction, we prescribed proportional potentials (with opposite signs) for the cross-interaction part. The model has a particle-based discrete (ODE) version and a continuum PDE version. We investigate the structure of particle stationary solution and their stability in the ODE system in a systematic form, and then consider simple examples. We then prove that the stable particle steady states are locally stable for the fully nonlinear continuum model, provided a slight reinforcement of the particle condition is required. The latter result holds in one space dimension. We complement all the particle examples with simple numerical simulations, and we provide some two-dimensional examples to highlight the complexity in the large time behavior of the system.


2021 ◽  
Vol 10 (1) ◽  
pp. 1235-1254
Author(s):  
Qiang Tao ◽  
Canze Zhu

Abstract This paper deals with a Cauchy problem of the full compressible Hall-magnetohydrodynamic flows. We establish the existence and uniqueness of global solution, provided that the initial energy is suitably small but the initial temperature allows large oscillations. In addition, the large time behavior of the global solution is obtained.


2008 ◽  
Vol 15 (3) ◽  
pp. 531-539
Author(s):  
Temur Jangveladze ◽  
Zurab Kiguradze

Abstract Large time behavior of solutions to the nonlinear integro-differential equation associated with the penetration of a magnetic field into a substance is studied. The rate of convergence is given, too. Dirichlet boundary conditions with homogeneous data are considered.


Sign in / Sign up

Export Citation Format

Share Document