scholarly journals Time decay rates for the coupled modified Navier-Stokes and Maxwell equations on a half space

2021 ◽  
Vol 6 (12) ◽  
pp. 13423-13431
Author(s):  
Jae-Myoung Kim ◽  

<abstract><p>This paper is concerned with time decay rates of the strong solutions of an incompressible the coupled modified Navier-Stokes and Maxwell equations in a half space $ \mathbb{R}^3_+ $. With the use of the spectral decomposition of the Stokes operator and $ L^p-L^q $ estimates developed by Borchers and Miyakawa <sup>[<xref ref-type="bibr" rid="b2">2</xref>]</sup>, we study the $ L^2 $-decay rate of strong solutions.</p></abstract>

Author(s):  
Hyeong-Ohk Bae ◽  
Bum Ja Jin

We obtain spatial and temporal decay rates of weak solutions of the Navier–Stokes equations, and for strong solutions. For the spatial decay rate of the weak solutions, the power of the weight given by He and Xin in 2001 does not exceed 3/2;. However, we show the power can be extended up to 5/2;.


Author(s):  
Hyeong-Ohk Bae ◽  
Bum Ja Jin

We obtain spatial and temporal decay rates of weak solutions of the Navier–Stokes equations, and for strong solutions. For the spatial decay rate of the weak solutions, the power of the weight given by He and Xin in 2001 does not exceed 3/2;. However, we show the power can be extended up to 5/2;.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Shuai Liu ◽  
Yuzhu Wang

<p style='text-indent:20px;'>In this paper, we investigate the optimal time-decay rates of global classical solutions for the compressible Oldroyd-B model in <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^n(n = 2,3) $\end{document}</tex-math></inline-formula>. Global classical solutions in two space dimensions are still open. We first complete the proof of global classical solutions in two space dimensions. Based on global classical solutions and Fourier spectrum analysis, we obtain the optimal time-decay rates of global classical solutions in two and three space dimensions. More precisely, if the initial data belong to <inline-formula><tex-math id="M2">\begin{document}$ L^1 $\end{document}</tex-math></inline-formula>, the optimal time-decay rate of solutions and time-decay rates of <inline-formula><tex-math id="M3">\begin{document}$ l(l = 1,\cdot\cdot\cdot,m) $\end{document}</tex-math></inline-formula> order derivatives under additional assumptions are established.</p>


1995 ◽  
Vol 05 (03) ◽  
pp. 279-296 ◽  
Author(s):  
MING MEI

This paper is to study the stability of shock profiles for nonconvex scalar viscous conservation laws with the nondegenerate and the degenerate shock conditions by means of an elementary energy method. In both cases, the shock profiles are proved to be asymptotically stable for suitably small initial disturbances. Moreover, in the case of nondegenerate shock condition, time decay rates of asymptotics are also obtained.


Sign in / Sign up

Export Citation Format

Share Document