scholarly journals Positive ground state solutions for asymptotically periodic generalized quasilinear Schrödinger equations

2021 ◽  
Vol 7 (1) ◽  
pp. 1015-1034
Author(s):  
Shulin Zhang ◽  
◽  

<abstract><p>In this paper, we study the existence of a positive ground state solution for a class of generalized quasilinear Schrödinger equations with asymptotically periodic potential. By the variational method, a positive ground state solution is obtained. Compared with the existing results, our results improve and generalize some existing related results.</p></abstract>

Author(s):  
Bartosz Bieganowski ◽  
Simone Secchi

Abstract We consider the nonlinear fractional problem $$\begin{aligned} (-\Delta )^{s} u + V(x) u = f(x,u)&\quad \hbox {in } \mathbb {R}^N \end{aligned}$$ ( - Δ ) s u + V ( x ) u = f ( x , u ) in R N We show that ground state solutions converge (along a subsequence) in $$L^2_{\mathrm {loc}} (\mathbb {R}^N)$$ L loc 2 ( R N ) , under suitable conditions on f and V, to a ground state solution of the local problem as $$s \rightarrow 1^-$$ s → 1 - .


Author(s):  
Jing Chen ◽  
Yiqing Li

In this paper, we dedicate to studying the following semilinear Schrödinger system equation*-Δu+V1(x)u=Fu(x,u,v)amp;mboxin~RN,r-Δv+V2(x)v=Fv(x,u,v)amp;mboxin~RN,ru,v∈H1(RN),endequation* where the potential Vi are periodic in x,i=1,2, the nonlinearity F is allowed super-quadratic at some x ∈ R N and asymptotically quadratic at the other x ∈ R N . Under a local super-quadratic condition of F, an approximation argument and variational method are used to prove the existence of Nehari–Pankov type ground state solutions and the least energy solutions.


2021 ◽  
Vol 7 (3) ◽  
pp. 3719-3730
Author(s):  
Yanhua Wang ◽  
◽  
Min Liu ◽  
Gongming Wei ◽  

<abstract><p>In this paper we consider the following system of coupled biharmonic Schrödinger equations</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \ \left\{ \begin{aligned} \Delta^{2}u+\lambda_{1}u = u^{3}+\beta u v^{2}, \\ \Delta^{2}v+\lambda_{2}v = v^{3}+\beta u^{2}v, \end{aligned} \right. \end{equation*} $\end{document} </tex-math></disp-formula></p> <p>where $ (u, v)\in H^{2}({\mathbb{R}}^{N})\times H^2(\mathbb R^N) $, $ 1\leq N\leq7 $, $ \lambda_{i} &gt; 0 (i = 1, 2) $ and $ \beta $ denotes a real coupling parameter. By Nehari manifold method and concentration compactness theorem, we prove the existence of ground state solution for the coupled system of Schrödinger equations. Previous results on ground state solutions are obtained in radially symmetric Sobolev space $ H_r^2(\mathbb R^N)\times H_r^2(\mathbb R^N) $. When $ \beta $ satisfies some conditions, we prove the existence of ground state solution in the whole space $ H^2(\mathbb R^N)\times H^2(\mathbb R^N) $.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document