scholarly journals Ground state solution and multiple solutions to asymptotically linear Schrödinger equations

2014 ◽  
Vol 2014 (1) ◽  
Author(s):  
Xiang-Dong Fang ◽  
Zhi-Qing Han
2021 ◽  
Vol 7 (1) ◽  
pp. 1015-1034
Author(s):  
Shulin Zhang ◽  
◽  

<abstract><p>In this paper, we study the existence of a positive ground state solution for a class of generalized quasilinear Schrödinger equations with asymptotically periodic potential. By the variational method, a positive ground state solution is obtained. Compared with the existing results, our results improve and generalize some existing related results.</p></abstract>


2021 ◽  
Vol 7 (3) ◽  
pp. 3719-3730
Author(s):  
Yanhua Wang ◽  
◽  
Min Liu ◽  
Gongming Wei ◽  

<abstract><p>In this paper we consider the following system of coupled biharmonic Schrödinger equations</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \ \left\{ \begin{aligned} \Delta^{2}u+\lambda_{1}u = u^{3}+\beta u v^{2}, \\ \Delta^{2}v+\lambda_{2}v = v^{3}+\beta u^{2}v, \end{aligned} \right. \end{equation*} $\end{document} </tex-math></disp-formula></p> <p>where $ (u, v)\in H^{2}({\mathbb{R}}^{N})\times H^2(\mathbb R^N) $, $ 1\leq N\leq7 $, $ \lambda_{i} &gt; 0 (i = 1, 2) $ and $ \beta $ denotes a real coupling parameter. By Nehari manifold method and concentration compactness theorem, we prove the existence of ground state solution for the coupled system of Schrödinger equations. Previous results on ground state solutions are obtained in radially symmetric Sobolev space $ H_r^2(\mathbb R^N)\times H_r^2(\mathbb R^N) $. When $ \beta $ satisfies some conditions, we prove the existence of ground state solution in the whole space $ H^2(\mathbb R^N)\times H^2(\mathbb R^N) $.</p></abstract>


Author(s):  
Bartosz Bieganowski ◽  
Simone Secchi

Abstract We consider the nonlinear fractional problem $$\begin{aligned} (-\Delta )^{s} u + V(x) u = f(x,u)&\quad \hbox {in } \mathbb {R}^N \end{aligned}$$ ( - Δ ) s u + V ( x ) u = f ( x , u ) in R N We show that ground state solutions converge (along a subsequence) in $$L^2_{\mathrm {loc}} (\mathbb {R}^N)$$ L loc 2 ( R N ) , under suitable conditions on f and V, to a ground state solution of the local problem as $$s \rightarrow 1^-$$ s → 1 - .


2017 ◽  
Vol 8 (1) ◽  
pp. 323-338 ◽  
Author(s):  
Yan-Fang Xue ◽  
Chun-Lei Tang

Abstract In this article, we establish the existence of bound state solutions for a class of quasilinear Schrödinger equations whose nonlinear term is asymptotically linear in {\mathbb{R}^{N}} . After changing the variables, the quasilinear equation becomes a semilinear equation, whose respective associated functional is well defined in {H^{1}(\mathbb{R}^{N})} . The proofs are based on the Pohozaev manifold and a linking theorem.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Zhang

AbstractIn this article, we consider the following quasilinear Schrödinger–Poisson system $$ \textstyle\begin{cases} -\Delta u+V(x)u-u\Delta (u^{2})+K(x)\phi (x)u=g(x,u), \quad x\in \mathbb{R}^{3}, \\ -\Delta \phi =K(x)u^{2}, \quad x\in \mathbb{R}^{3}, \end{cases} $$ { − Δ u + V ( x ) u − u Δ ( u 2 ) + K ( x ) ϕ ( x ) u = g ( x , u ) , x ∈ R 3 , − Δ ϕ = K ( x ) u 2 , x ∈ R 3 , where $V,K:\mathbb{R}^{3}\rightarrow \mathbb{R}$ V , K : R 3 → R and $g:\mathbb{R}^{3}\times \mathbb{R}\rightarrow \mathbb{R}$ g : R 3 × R → R are continuous functions; g is of subcritical growth and has some monotonicity properties. The purpose of this paper is to find the ground state solution of (0.1), i.e., a nontrivial solution with the least possible energy by taking advantage of the generalized Nehari manifold approach, which was proposed by Szulkin and Weth. Furthermore, infinitely many geometrically distinct solutions are gained while g is odd in u.


Sign in / Sign up

Export Citation Format

Share Document