scholarly journals Delay differential equations via the matrix lambert w function and bifurcation analysis: application to machine tool chatter

2007 ◽  
Vol 4 (2) ◽  
pp. 355-368 ◽  
2018 ◽  
Author(s):  
A. Galip Ulsoy ◽  
Rita Gitik

Convergence aspects of the matrix Lambert W function method for solving systems of delay differential equations (DDEs) are considered. Recent research results show that convergence problems can occur with certain DDEs when using the well-established Q-iteration approach. A complementary, and recently proposed, W-iteration approach is shown to converge even on systems where the Q-iteration fails. Furthermore, the role played by the branch numbers k = -∞ .. -2, -1, 0, 1, 2 , .. ∞ of the matrix Lambert W function, Wk, in terms of initializing the iterative solutions, is also discussed and elucidated. Several second order examples, known to have convergence problems with Q-iteration, are readily solved by W-iteration. Examples of third and fourth order DDEs show that the W-iteration method is also effective on higher-order systems.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
A. Galip Ulsoy ◽  
Rita Gitik

Abstract Convergence of the matrix Lambert W function method for solving systems of delay differential equations (DDEs) is considered. Recent research shows that convergence problems occur with certain DDEs when using the well-established Q-iteration approach. A complementary, and recently proposed, W-iteration approach is shown to converge even on systems where Q-iteration fails. Furthermore, the role played by the branch numbers k = −∞ … −1, 0, 1, … ∞ of the matrix Lambert W function, Wk, in terms of initializing the iterative solutions, is also discussed and elucidated. Several second-order examples, known to have convergence problems with Q-iteration, are readily solved by W-iteration. Examples of third- and fourth-order DDEs show that W-iteration is also effective on higher-order systems.


Author(s):  
Sun Yi ◽  
Patrick W. Nelson ◽  
A. Galip Ulsoy

We investigate the stability of the regenerative machine tool chatter problem, in a turning process modeled using delay differential equations (DDEs). An approach using the matrix Lambert function for the analytical solution to systems to delay differential equations is applied to this problem and compared with the result obtained using a bifurcation analysis. The Lambert function, known to be useful for solving scalar first order DDEs, has recently been extended to a matrix Lambert function approach to solve systems of DDEs. The essential advantage of the matrix Lambert approach is not only the similarity to the concept of the state transition matrix in linear ordinary differential equations, enabling its use for general classes of linear delay differential equations, but also the observation that we need only the principal branch among an infinite number of roots to determine the stability of a system of DDEs. The bifurcation method combined with Sturm sequences provides an algorithm for determining the stability of DDEs without restrictive geometric analysis. With this approach, one can obtain the critical values of delay which determine the stability of a system and hence the preferred operating spindle speed without chatter. We apply both the matrix Lambert function and the bifurcation analysis approach to the problem of chatter stability in turning, and compare the results obtained to existing methods. The two new approaches show excellent accuracy, and certain other advantages, when compared to traditional graphical, computational and approximate methods.


2001 ◽  
Vol 11 (03) ◽  
pp. 737-753 ◽  
Author(s):  
TATYANA LUZYANINA ◽  
KOEN ENGELBORGHS ◽  
DIRK ROOSE

In this paper we apply existing numerical methods for bifurcation analysis of delay differential equations with constant delay to equations with state-dependent delay. In particular, we study the computation, continuation and stability analysis of steady state solutions and periodic solutions. We collect the relevant theory and describe open theoretical problems in the context of bifurcation analysis. We present computational results for two examples and compare with analytical results whenever possible.


Author(s):  
Ali Demir ◽  
N. Sri Namachchivaya ◽  
W. F. Langford

The mathematical models representing machine tool chatter dynamics have been cast as differential equations with delay. The suppression of regenerative chatter by spindle speed variation is attracting increasing attention. In this paper, we study nonlinear delay differential equations with periodic delays which models the machine tool chatter with continuously modulated spindle speed. The explicit time-dependent delay terms, due to spindle speed modulation, are replaced by state dependent delay terms by augmenting the original equations. The augmented system of equations is autonomous and has two pairs of pure imaginary eigenvalues without resonance. We make use of Lyapunov-Schmidt Reduction method to determine the periodic solutions and analyze the tool motion. Analytical results show both modest increase of stability and existence of periodic solutions close to the new stability boundary.


2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
Z. H. Wang

The stability of a delay differential equation can be investigated on the basis of the root location of the characteristic function. Though a number of stability criteria are available, they usually do not provide any information about the characteristic root with maximal real part, which is useful in justifying the stability and in understanding the system performances. Because the characteristic function is a transcendental function that has an infinite number of roots with no closed form, the roots can be found out numerically only. While some iterative methods work effectively in finding a root of a nonlinear equation for a properly chosen initial guess, they do not work in finding the rightmost root directly from the characteristic function. On the basis of Lambert W function, this paper presents an effective iterative algorithm for the calculation of the rightmost roots of neutral delay differential equations so that the stability of the delay equations can be determined directly, illustrated with two examples.


Sign in / Sign up

Export Citation Format

Share Document