scholarly journals Inference in nonparametric/semiparametric moment equality models with shape restrictions

2020 ◽  
Vol 11 (2) ◽  
pp. 609-636
Author(s):  
Yu Zhu

This paper studies the inference problem of an infinite‐dimensional parameter with a shape restriction. This parameter is identified by arbitrarily many unconditional moment equalities. The shape restriction leads to a convex restriction set. I propose a test of the shape restriction, which controls size uniformly and applies to both point‐identified and partially identified models. The test can be inverted to construct confidence sets after imposing the shape restriction. Monte Carlo experiments show the finite‐sample properties of this method. In an empirical illustration, I apply the method to ascending auctions held by the US Forest Service and show that imposing shape restrictions can significantly improve inference.

Test ◽  
2019 ◽  
Vol 29 (4) ◽  
pp. 966-988
Author(s):  
Francesco Bravo

AbstractThis paper considers estimation and inference for a class of varying coefficient models in which some of the responses and some of the covariates are missing at random and outliers are present. The paper proposes two general estimators—and a computationally attractive and asymptotically equivalent one-step version of them—that combine inverse probability weighting and robust local linear estimation. The paper also considers inference for the unknown infinite-dimensional parameter and proposes two Wald statistics that are shown to have power under a sequence of local Pitman drifts and are consistent as the drifts diverge. The results of the paper are illustrated with three examples: robust local generalized estimating equations, robust local quasi-likelihood and robust local nonlinear least squares estimation. A simulation study shows that the proposed estimators and test statistics have competitive finite sample properties, whereas two empirical examples illustrate the applicability of the proposed estimation and testing methods.


Author(s):  
Denis Chetverikov ◽  
Dongwoo Kim ◽  
Daniel Wilhelm

In this article, we introduce the commands npiv and npivcv, which implement nonparametric instrumental-variable (NPIV) estimation methods without and with a cross-validated choice of tuning parameters, respectively. Both commands can impose the constraint that the resulting estimated function is monotone. Using such a shape restriction may significantly improve the performance of the NPIV estimator (Chetverikov and Wilhelm, 2017, Econometrica 85: 1303–1320) because the ill-posedness of the NPIV estimation problem leads to unconstrained estimators that suffer from particularly poor statistical properties such as high variance. However, the constrained estimator that imposes the monotonicity significantly reduces variance by removing nonmonotone oscillations of the estimator. We provide a small Monte Carlo experiment to study the estimators’ finite-sample properties and an application to the estimation of gasoline demand functions.


Author(s):  
Achim Dörre

AbstractWe study a selective sampling scheme in which survival data are observed during a data collection period if and only if a specific failure event is experienced. Individual units belong to one of a finite number of subpopulations, which may exhibit different survival behaviour, and thus cause heterogeneity. Based on a Poisson process model for individual emergence of population units, we derive a semiparametric likelihood model, in which the birth distribution is modeled nonparametrically and the lifetime distributions parametrically, and define maximum likelihood estimators. We propose a Newton–Raphson-type optimization method to address numerical challenges caused by the high-dimensional parameter space. The finite-sample properties and computational performance of the proposed algorithms are assessed in a simulation study. Personal insolvencies are studied as a special case of double truncation and we fit the semiparametric model to a medium-sized dataset to estimate the mean age at insolvency and the birth distribution of the underlying population.


1992 ◽  
Vol 8 (4) ◽  
pp. 452-475 ◽  
Author(s):  
Jeffrey M. Wooldridge

A test for neglected nonlinearities in regression models is proposed. The test is of the Davidson-MacKinnon type against an increasingly rich set of non-nested alternatives, and is based on sieve estimation of the alternative model. For the case of a linear parametric model, the test statistic is shown to be asymptotically standard normal under the null, while rejecting with probability going to one if the linear model is misspecified. A small simulation study suggests that the test has adequate finite sample properties, but one must guard against over fitting the nonparametric alternative.


2013 ◽  
Vol 805-806 ◽  
pp. 1948-1951
Author(s):  
Tian Jin

The non-homogeneous Poisson model has been applied to various situations, including air pollution data. In this paper, we propose a kernel based nonparametric estimation for fitting the non-homogeneous Poisson process data. We show that our proposed estimator is-consistent and asymptotically normally distributed. We also study the finite-sample properties with a simulation study.


2021 ◽  
Vol 47 (2) ◽  
pp. 1-34
Author(s):  
Umberto Villa ◽  
Noemi Petra ◽  
Omar Ghattas

We present an extensible software framework, hIPPYlib, for solution of large-scale deterministic and Bayesian inverse problems governed by partial differential equations (PDEs) with (possibly) infinite-dimensional parameter fields (which are high-dimensional after discretization). hIPPYlib overcomes the prohibitively expensive nature of Bayesian inversion for this class of problems by implementing state-of-the-art scalable algorithms for PDE-based inverse problems that exploit the structure of the underlying operators, notably the Hessian of the log-posterior. The key property of the algorithms implemented in hIPPYlib is that the solution of the inverse problem is computed at a cost, measured in linearized forward PDE solves, that is independent of the parameter dimension. The mean of the posterior is approximated by the MAP point, which is found by minimizing the negative log-posterior with an inexact matrix-free Newton-CG method. The posterior covariance is approximated by the inverse of the Hessian of the negative log posterior evaluated at the MAP point. The construction of the posterior covariance is made tractable by invoking a low-rank approximation of the Hessian of the log-likelihood. Scalable tools for sample generation are also discussed. hIPPYlib makes all of these advanced algorithms easily accessible to domain scientists and provides an environment that expedites the development of new algorithms.


2018 ◽  
Vol 22 ◽  
pp. 19-34 ◽  
Author(s):  
Nigel J. Newton

We develop a family of infinite-dimensional (non-parametric) manifolds of probability measures. The latter are defined on underlying Banach spaces, and have densities of class Cbk with respect to appropriate reference measures. The case k = ∞, in which the manifolds are modelled on Fréchet spaces, is included. The manifolds admit the Fisher-Rao metric and, unusually for the non-parametric setting, Amari’s α-covariant derivatives for all α ∈ ℝ. By construction, they are C∞-embedded submanifolds of particular manifolds of finite measures. The statistical manifolds are dually (α = ±1) flat, and admit mixture and exponential representations as charts. Their curvatures with respect to the α-covariant derivatives are derived. The likelihood function associated with a finite sample is a continuous function on each of the manifolds, and the α-divergences are of class C∞.


Sign in / Sign up

Export Citation Format

Share Document