On the calculation of out-of-plane geometrical spreading in anisotropic media

Author(s):  
Einar Iversen
2002 ◽  
Vol 50 (4) ◽  
pp. 383-392 ◽  
Author(s):  
Norman Ettrich ◽  
Anders Sollid ◽  
Bjørn Ursin

Author(s):  
Bjørn Ursin ◽  
Nathalie Favretto-Cristini ◽  
Paul Cristini

Summary It is well known that seismic data that have been recorded in complex geological environments must be compensated for geometrical spreading before AVO/AVA analysis, in order to avoid erroneous imaging interpretation. By investigating analytically both the effect of the geometrical spreading and the effect of the reflector curvature on amplitude and phase changes for reflected and transmitted waves between anisotropic media, using ray theory, we show that these data should be compensated for interface effects as well. In order to gain insight more specifically in the focusing effect of the interface, the special case of homogeneous isotropic media separated by a curved interface of syncline type is discussed and compared to the case of a plane interface. 3D numerical simulations of wave reflection from curved interfaces using a Spectral-Element Method validate our analytical derivations. In particular, numerical seismograms obtained at a vertical receiver array highlight that the effect of interface curvature on the reflected events is much more pronounced in a restricted area associated with the existence of caustics, which is consistent with our analytical predictions. Moreover, comparisons between the numerical and the analytical results confirm the fact that using plane-wave reflection coefficients without correction for the interface effect may lead to wrong interpretation of AVA/AVO analysis.


2003 ◽  
Author(s):  
Xiaoxia Xu ◽  
Ilya Tsvankin ◽  
Andres Pech

Geophysics ◽  
2005 ◽  
Vol 70 (5) ◽  
pp. D43-D53 ◽  
Author(s):  
Xiaoxia Xu ◽  
Ilya Tsvankin ◽  
Andrés Pech

For processing and inverting reflection data, it is convenient to represent geometrical spreading through the reflection traveltime measured at the earth's surface. Such expressions are particularly important for azimuthally anisotropic models in which variations of geometrical spreading with both offset and azimuth can significantly distort the results of wide-azimuth amplitude-variation-with-offset (AVO) analysis. Here, we present an equation for relative geometrical spreading in laterally homogeneous, arbitrarily anisotropic media as a simple function of the spatial derivatives of reflection traveltimes. By employing the Tsvankin-Thomsen nonhyperbolic moveout equation, the spreading is represented through the moveout coefficients, which can be estimated from surface seismic data. This formulation is then applied to P-wave reflections in an orthorhombic layer to evaluate the distortions of the geometrical spreading caused by both polar and azimuthal anisotropy. The relative geometrical spreading of P-waves in homogeneous orthorhombic media is controlled by five parameters that are also responsible for time processing. The weak-anisotropy approximation, verified by numerical tests, shows that azimuthal velocity variations contribute significantly to geometrical spreading, and the existing equations for transversely isotropic media with a vertical symmetry axis (VTI) cannot be applied even in the vertical symmetry planes. The shape of the azimuthally varying spreading factor is close to an ellipse for offsets smaller than the reflector depth but becomes more complicated for larger offset-to-depth ratios. The overall magnitude of the azimuthal variation of the geometrical spreading for the moderately anisotropic model used in the tests exceeds 25% for a wide range of offsets. While the methodology developed here is helpful in modeling and analyzing anisotropic geometrical spreading, its main practical application is in correcting the wide-azimuth AVO signature for the influence of the anisotropic overburden.


Sign in / Sign up

Export Citation Format

Share Document