Geometrical spreading of P-waves in horizontally layered, azimuthally anisotropic media

Geophysics ◽  
2005 ◽  
Vol 70 (5) ◽  
pp. D43-D53 ◽  
Author(s):  
Xiaoxia Xu ◽  
Ilya Tsvankin ◽  
Andrés Pech

For processing and inverting reflection data, it is convenient to represent geometrical spreading through the reflection traveltime measured at the earth's surface. Such expressions are particularly important for azimuthally anisotropic models in which variations of geometrical spreading with both offset and azimuth can significantly distort the results of wide-azimuth amplitude-variation-with-offset (AVO) analysis. Here, we present an equation for relative geometrical spreading in laterally homogeneous, arbitrarily anisotropic media as a simple function of the spatial derivatives of reflection traveltimes. By employing the Tsvankin-Thomsen nonhyperbolic moveout equation, the spreading is represented through the moveout coefficients, which can be estimated from surface seismic data. This formulation is then applied to P-wave reflections in an orthorhombic layer to evaluate the distortions of the geometrical spreading caused by both polar and azimuthal anisotropy. The relative geometrical spreading of P-waves in homogeneous orthorhombic media is controlled by five parameters that are also responsible for time processing. The weak-anisotropy approximation, verified by numerical tests, shows that azimuthal velocity variations contribute significantly to geometrical spreading, and the existing equations for transversely isotropic media with a vertical symmetry axis (VTI) cannot be applied even in the vertical symmetry planes. The shape of the azimuthally varying spreading factor is close to an ellipse for offsets smaller than the reflector depth but becomes more complicated for larger offset-to-depth ratios. The overall magnitude of the azimuthal variation of the geometrical spreading for the moderately anisotropic model used in the tests exceeds 25% for a wide range of offsets. While the methodology developed here is helpful in modeling and analyzing anisotropic geometrical spreading, its main practical application is in correcting the wide-azimuth AVO signature for the influence of the anisotropic overburden.

Geophysics ◽  
1997 ◽  
Vol 62 (4) ◽  
pp. 1292-1309 ◽  
Author(s):  
Ilya Tsvankin

Although orthorhombic (or orthotropic) symmetry is believed to be common for fractured reservoirs, the difficulties in dealing with nine independent elastic constants have precluded this model from being used in seismology. A notation introduced in this work is designed to help make seismic inversion and processing for orthorhombic media more practical by simplifying the description of a wide range of seismic signatures. Taking advantage of the fact that the Christoffel equation has the same form in the symmetry planes of orthorhombic and transversely isotropic (TI) media, we can replace the stiffness coefficients by two vertical (P and S) velocities and seven dimensionless parameters that represent an extension of Thomsen's anisotropy coefficients to orthorhombic models. By design, this notation provides a uniform description of anisotropic media with both orthorhombic and TI symmetry. The dimensionless anisotropic parameters introduced here preserve all attractive features of Thomsen notation in treating wave propagation and performing 2-D processing in the symmetry planes of orthorhombic media. The new notation has proved useful in describing seismic signatures outside the symmetry planes as well, especially for P‐waves. Linearization of P‐wave phase velocity in the anisotropic coefficients leads to a concise weak‐anisotropy approximation that provides good accuracy even for models with pronounced polar and azimuthal velocity variations. This approximation can be used efficiently to build analytic solutions for various seismic signatures. One of the most important advantages of the new notation is the reduction in the number of parameters responsible for P‐wave velocities and traveltimes. All kinematic signatures of P‐waves in orthorhombic media depend on just the vertical velocity [Formula: see text] and five anisotropic parameters, with [Formula: see text] serving as a scaling coefficient in homogeneous media. This conclusion, which holds even for orthorhombic models with strong velocity anisotropy, provides an analytic basis for application of P‐wave traveltime inversion and data processing algorithms in orthorhombic media.


Geophysics ◽  
1995 ◽  
Vol 60 (1) ◽  
pp. 268-284 ◽  
Author(s):  
Ilya Tsvankin

Description of reflection moveout from dipping interfaces is important in developing seismic processing methods for anisotropic media, as well as in the inversion of reflection data. Here, I present a concise analytic expression for normal‐moveout (NMO) velocities valid for a wide range of homogeneous anisotropic models including transverse isotropy with a tilted in‐plane symmetry axis and symmetry planes in orthorhombic media. In transversely isotropic media, NMO velocity for quasi‐P‐waves may deviate substantially from the isotropic cosine‐of‐dip dependence used in conventional constant‐velocity dip‐moveout (DMO) algorithms. However, numerical studies of NMO velocities have revealed no apparent correlation between the conventional measures of anisotropy and errors in the cosine‐of‐dip DMO correction (“DMO errors”). The analytic treatment developed here shows that for transverse isotropy with a vertical symmetry axis, the magnitude of DMO errors is dependent primarily on the difference between Thomsen parameters ε and δ. For the most common case, ε − δ > 0, the cosine‐of‐dip–corrected moveout velocity remains significantly larger than the moveout velocity for a horizontal reflector. DMO errors at a dip of 45 degrees may exceed 20–25 percent, even for weak anisotropy. By comparing analytically derived NMO velocities with moveout velocities calculated on finite spreads, I analyze anisotropy‐induced deviations from hyperbolic moveout for dipping reflectors. For transversely isotropic media with a vertical velocity gradient and typical (positive) values of the difference ε − δ, inhomogeneity tends to reduce (sometimes significantly) the influence of anisotropy on the dip dependence of moveout velocity.


Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 2082-2091 ◽  
Author(s):  
Bjørn Ursin ◽  
Ketil Hokstad

Compensation for geometrical spreading is important in prestack Kirchhoff migration and in amplitude versus offset/amplitude versus angle (AVO/AVA) analysis of seismic data. We present equations for the relative geometrical spreading of reflected and transmitted P‐ and S‐wave in horizontally layered transversely isotropic media with vertical symmetry axis (VTI). We show that relatively simple expressions are obtained when the geometrical spreading is expressed in terms of group velocities. In weakly anisotropic media, we obtain simple expressions also in terms of phase velocities. Also, we derive analytical equations for geometrical spreading based on the nonhyperbolic traveltime formula of Tsvankin and Thomsen, such that the geometrical spreading can be expressed in terms of the parameters used in time processing of seismic data. Comparison with numerical ray tracing demonstrates that the weak anisotropy approximation to geometrical spreading is accurate for P‐waves. It is less accurate for SV‐waves, but has qualitatively the correct form. For P waves, the nonhyperbolic equation for geometrical spreading compares favorably with ray‐tracing results for offset‐depth ratios less than five. For SV‐waves, the analytical approximation is accurate only at small offsets, and breaks down at offset‐depth ratios less than unity. The numerical results are in agreement with the range of validity for the nonhyperbolic traveltime equations.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. C175-C185 ◽  
Author(s):  
Ivan Pšenčík ◽  
Véronique Farra

We have developed approximate nonhyperbolic P-wave moveout formulas applicable to weakly or moderately anisotropic media of arbitrary anisotropy symmetry and orientation. Instead of the commonly used Taylor expansion of the square of the reflection traveltime in terms of the square of the offset, we expand the square of the reflection traveltime in terms of weak-anisotropy (WA) parameters. No acoustic approximation is used. We specify the formulas designed for anisotropy of arbitrary symmetry for the transversely isotropic (TI) media with the axis of symmetry oriented arbitrarily in the 3D space. Resulting formulas depend on three P-wave WA parameters specifying the TI symmetry and two angles specifying the orientation of the axis of symmetry. Tests of the accuracy of the more accurate of the approximate formulas indicate that maximum relative errors do not exceed 0.3% or 2.5% for weak or moderate P-wave anisotropy, respectively.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. D161-D170 ◽  
Author(s):  
Xiaoxia Xu ◽  
Ilya Tsvankin

Compensation for geometrical spreading along a raypath is one of the key steps in AVO (amplitude-variation-with-offset) analysis, in particular, for wide-azimuth surveys. Here, we propose an efficient methodology to correct long-spread, wide-azimuth reflection data for geometrical spreading in stratified azimuthally anisotropic media. The P-wave geometrical-spreading factor is expressed through the reflection traveltime described by a nonhyperbolic moveout equation that has the same form as in VTI (transversely isotropic with a vertical symmetry axis) media. The adapted VTI equation is parameterized by the normal-moveout (NMO) ellipse and the azimuthally varying anellipticity parameter [Formula: see text]. To estimate the moveout parameters, we apply a 3D nonhyperbolic semblance algorithm of Vasconcelos and Tsvankin that operates simultaneously with traces at all offsets andazimuths. The estimated moveout parameters are used as the input in our geometrical-spreading computation. Numerical tests for models composed of orthorhombic layers with strong, depth-varying velocity anisotropy confirm the high accuracy of our travetime-fitting procedure and, therefore, of the geometrical-spreading correction. Because our algorithm is based entirely on the kinematics of reflection arrivals, it can be incorporated readily into the processing flow of azimuthal AVO analysis. In combination with the nonhyperbolic moveout inversion, we apply our method to wide-azimuth P-wave data collected at the Weyburn field in Canada. The geometrical-spreading factor for the reflection from the top of the fractured reservoir is clearly influenced by azimuthal anisotropy in the overburden, which should cause distortions in the azimuthal AVO attributes. This case study confirms that the azimuthal variation of the geometrical-spreading factor often is comparable to or exceeds that of the reflection coefficient.


Geophysics ◽  
2000 ◽  
Vol 65 (4) ◽  
pp. 1305-1315 ◽  
Author(s):  
Hongbo Zhou ◽  
George A. McMechan

An analytical formula for geometrical spreading is derived for a horizontally layered transversely isotropic medium with a vertical symmetry axis (VTI). With this expression, geometrical spreading can be determined using only the anisotropy parameters in the first layer, the traveltime derivatives, and the source‐receiver offset. Explicit, numerically feasible expressions for geometrical spreading are obtained for special cases of transverse isotropy (weak anisotropy and elliptic anisotropy). Geometrical spreading can be calculated for transversly isotropic (TI) media by using picked traveltimes of primary nonhyperbolic P-wave reflections without having to know the actual parameters in the deeper subsurface; no ray tracing is needed. Synthetic examples verify the algorithm and show that it is numerically feasible for calculation of geometrical spreading. For media with a few (4–5) layers, relative errors in the computed geometrical spreading remain less than 0.5% for offset/depth ratios less than 1.0. Errors that change with offset are attributed to inaccuracy in the expression used for nonhyberbolic moveout. Geometrical spreading is most sensitive to errors in NMO velocity, followed by errors in zero‐offset reflection time, followed by errors in anisotropy of the surface layer. New relations between group and phase velocities and between group and phase angles are shown in appendices.


Geophysics ◽  
1997 ◽  
Vol 62 (4) ◽  
pp. 1260-1269 ◽  
Author(s):  
John E. Anderson ◽  
Ilya Tsvankin

Conventional dip‐moveout (DMO) processing is designed for isotropic media and cannot handle angle‐dependent velocity. We show that Hale's isotropic DMO algorithm remains valid for elliptical anisotropy but may lead to serious errors for nonelliptical models, even if velocity anisotropy is moderate. Here, Hale's constant‐velocity DMO method is extended to anisotropic media. The DMO operator, to be applied to common‐offset data corrected for normal moveout (NMO), is based on the analytic expression for dip‐dependent NMO velocity given by Tsvankin. Since DMO correction in anisotropic media requires knowledge of the velocity field, it should be preceded by an inversion procedure designed to obtain the normal‐moveout velocity as a function of ray parameter. For transversely isotropic models with a vertical symmetry axis (VTI media), P‐wave NMO velocity depends on a single anisotropic coefficient (η) that can be determined from surface reflection data. Impulse responses and synthetic examples for typical VTI media demonstrate the accuracy and efficiency of this DMO technique. Once the inversion step has been completed, the NMO-DMO sequence does not take any more computing time than the genetic Hale method in isotropic media. Our DMO operator is not limited to vertical transverse isotropy as it can be applied in the same fashion in symmetry planes of more complicated anisotropic models such as orthorhombic.


Geophysics ◽  
1995 ◽  
Vol 60 (5) ◽  
pp. 1550-1566 ◽  
Author(s):  
Tariq Alkhalifah ◽  
Ilya Tsvankin

The main difficulty in extending seismic processing to anisotropic media is the recovery of anisotropic velocity fields from surface reflection data. We suggest carrying out velocity analysis for transversely isotropic (TI) media by inverting the dependence of P‐wave moveout velocities on the ray parameter. The inversion technique is based on the exact analytic equation for the normal‐moveout (NMO) velocity for dipping reflectors in anisotropic media. We show that P‐wave NMO velocity for dipping reflectors in homogeneous TI media with a vertical symmetry axis depends just on the zero‐dip value [Formula: see text] and a new effective parameter η that reduces to the difference between Thomsen parameters ε and δ in the limit of weak anisotropy. Our inversion procedure makes it possible to obtain η and reconstruct the NMO velocity as a function of ray parameter using moveout velocities for two different dips. Moreover, [Formula: see text] and η determine not only the NMO velocity, but also long‐spread (nonhyperbolic) P‐wave moveout for horizontal reflectors and the time‐migration impulse response. This means that inversion of dip‐moveout information allows one to perform all time‐processing steps in TI media using only surface P‐wave data. For elliptical anisotropy (ε = δ), isotropic time‐processing methods remain entirely valid. We show the performance of our velocity‐analysis method not only on synthetic, but also on field data from offshore Africa. Accurate time‐to‐depth conversion, however, requires that the vertical velocity [Formula: see text] be resolved independently. Unfortunately, it cannot be done using P‐wave surface moveout data alone, no matter how many dips are available. In some cases [Formula: see text] is known (e.g., from check shots or well logs); then the anisotropy parameters ε and δ can be found by inverting two P‐wave NMO velocities corresponding to a horizontal and a dipping reflector. If no well information is available, all three parameters ([Formula: see text], ε, and δ) can be obtained by combining our inversion results with shear‐wave information, such as the P‐SV or SV‐SV wave NMO velocities for a horizontal reflector. Generalization of the single‐layer NMO equation to layered anisotropic media with a dipping reflector provides a basis for extending anisotropic velocity analysis to vertically inhomogeneous media. We demonstrate how the influence of a stratified anisotropic overburden on moveout velocity can be stripped through a Dix‐type differentiation procedure.


Geophysics ◽  
1994 ◽  
Vol 59 (8) ◽  
pp. 1290-1304 ◽  
Author(s):  
Ilya Tsvankin ◽  
Leon Thomsen

The standard hyperbolic approximation for reflection moveouts in layered media is accurate only for relatively short spreads, even if the layers are isotropic. Velocity anisotropy may significantly enhance deviations from hyperbolic moveout. Nonhyperbolic analysis in anisotropic media is also important because conventional hyperbolic moveout processing on short spreads is insufficient to recover the true vertical velocity (hence the depth). We present analytic and numerical analysis of the combined influence of vertical transverse isotropy and layering on long‐spread reflection moveouts. Qualitative description of nonhyperbolic moveout on “intermediate” spreads (offset‐to‐depth ratio x/z  < 1.7–2) is given in terms of the exact fourth‐order Taylor series expansion for P, SV, and P‐SV traveltime curves, valid for multilayered transversely isotropic media with arbitrary strength of anisotropy. We use this expansion to provide an analytic explanation for deviations from hyperbolic moveout, such as the strongly nonhyperbolic SV‐moveout observed numerically in the case where δ < ε. With this expansion, we also show that the weak anisotropy approximation becomes inadequate (to describe nonhyperbolic moveout) for surprisingly small values of the anisotropies δ and ε. However, the fourth‐order Taylor series rapidly loses numerical accuracy with increasing offset. We suggest a new, more general analytical approximation, and test it against several transversely isotropic models. For P‐waves, this moveout equation remains numerically accurate even for substantial anisotropy and large offsets. This approximation provides a fast and effective way to estimate the behavior of long‐spread moveouts for layered anisotropic models.


Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. C17-C37 ◽  
Author(s):  
Véronique Farra ◽  
Ivan Pšenčík ◽  
Petr Jílek

We have used so-called weak anisotropy (WA) parameterization as an alternative to the parameterization of generally anisotropic media by a stiffness tensor. WA parameters consist of linear combinations of normalized stiffness-tensor elements controlling various seismic signatures; hence, they are theoretically extractable from seismic data. They are dimensionless and can be designed to have the same order of magnitude. WA parameters, similarly to Thomsen-type parameters, have a clear physical interpretation. They are, however, applicable to anisotropy of any symmetry, strength, and orientation. They are defined in coordinate systems independent of the symmetry elements of the studied media. Expressions using WA parameters naturally simplify as the anisotropy becomes weaker or as the anisotropy symmetry increases. We expect that, due to these useful properties, WA parameterization can potentially provide a framework for seismic data processing in generally anisotropic media. Using the WA parameterization, we have derived and tested approximate P-wave moveout formulas for a homogeneous layer of up-to-monoclinic symmetry, underlain by a horizontal reflector coinciding with a symmetry plane. The derived traveltime formulas represent an expansion of the traveltime with respect to (small) WA parameters. For the comparison with standard moveout formulas, we expressed ours in the common form of nonhyperbolic moveout, containing normal moveout velocity and a quartic coefficient as functions of the WA parameters. The accuracy of our formulas depends strongly on the deviation of ray- and phase-velocity directions (controlled by the deviation of the ray and phase velocities). The errors do not generally increase with increasing offset, nor do they increase with decreasing anisotropy symmetry. The accuracy of our formulas is comparable with, or better than, the accuracy of commonly used formulas.


Sign in / Sign up

Export Citation Format

Share Document