Frequency-domain Modeling of Pseudo-acoustic Wave Propagation in 2D Tilted Transversely Isotropic Media

Author(s):  
Q.Z. Du ◽  
C.F. Guo ◽  
G.C. Wang ◽  
F.S. Yang
Author(s):  
Yuta OZAWA ◽  
Taku NONOMURA ◽  
Masayuki ANYOJI ◽  
Hiroya MAMORI ◽  
Naoya FUKUSHIMA ◽  
...  

Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. C1-C14 ◽  
Author(s):  
Ramzi Djebbi ◽  
Tariq Alkhalifah

Multiparameter full-waveform inversion for transversely isotropic media with a vertical axis of symmetry (VTI) suffers from the trade-off between the parameters. The trade-off results in the leakage of one parameter’s update into the other. It affects the accuracy and convergence of the inversion. The sensitivity analyses suggested a parameterization using the horizontal velocity [Formula: see text], Thomsen’s parameter [Formula: see text], and the anelliptic parameter [Formula: see text] to reduce the trade-off for surface recorded seismic data. We aim to invert for this parameterization using the scattering integral (SI) method. The available Born sensitivity kernels, within this approach, can be used to calculate additional inversion information. We mainly compute the diagonal of the approximate Hessian, used as a conjugate-gradient preconditioner, and the gradients’ step lengths. We consider modeling in the frequency domain. The large computational cost of the SI method can be avoided with direct Helmholtz equation solvers. We applied our method to the VTI Marmousi II model for various inversion strategies. We found that we can invert the [Formula: see text] accurately. For the [Formula: see text] parameter, only the short wavelengths are well-recovered. On the other hand, the [Formula: see text] parameter impact is weak on the inversion results and can be fixed. However, a good background [Formula: see text], with accurate long wavelengths, is needed to correctly invert for [Formula: see text]. Furthermore, we invert a real data set acquired by CGG from offshore Australia. We simultaneously invert all three parameters using our inversion approach. The velocity model is improved, and additional layers are recovered. We confirm the accuracy of the results by comparing them with well-log information, as well as looking at the data and angle gathers.


Sign in / Sign up

Export Citation Format

Share Document