Requirements Traceability within Model-Based Testing

Author(s):  
Vanessa Grosch

Requirements traceability enables the linkage between all development artifacts during the development process. Within model-based testing, requirements traceability links the original requirements with test model elements and generated test cases. Current approaches are either not practical or lack the necessary formal foundation for generating requirements-based test cases using model-checking techniques involving the requirements trace. This paper describes a practical and formal approach to ensure requirements traceability. The descriptions of the requirements are defined on path fragments of timed automata or timed state charts. The graphical representation of these paths is called a computation sequence chart (CSC). CSCs are automatically transformed into temporal logic formulae. A model-checking algorithm considers these formulae when generating test cases.

Author(s):  
Vanessa Grosch

Requirements traceability enables the linkage between all development artifacts during the development process. Within model-based testing, requirements traceability links the original requirements with test model elements and generated test cases. Current approaches are either not practical or lack the necessary formal foundation for generating requirements-based test cases using model-checking techniques involving the requirements trace. This paper describes a practical and formal approach to ensure requirements traceability. The descriptions of the requirements are defined on path fragments of timed automata or timed state charts. The graphical representation of these paths is called a computation sequence chart (CSC). CSCs are automatically transformed into temporal logic formulae. A model-checking algorithm considers these formulae when generating test cases.


2019 ◽  
Vol 104 ◽  
pp. 88-102 ◽  
Author(s):  
Emília Villani ◽  
Rodrigo Pastl Pontes ◽  
Guilherme Kisselofl Coracini ◽  
Ana Maria Ambrósio

2021 ◽  
Author(s):  
Moez Krichen ◽  
Seifeddine Mechti

<div>We propose a new model-based testing approach which takes as input a set of requirements described in Arabic Controlled Natural Language (CNL) which is a subset of the Arabic language generated by a specific grammar. The semantics of the considered requirements is defined using the Case Grammar Theory (CTG). The requirements are translated into Transition Relations which serve as an input for test cases generation tools.</div>


2021 ◽  
Author(s):  
Moez Krichen ◽  
Seifeddine Mechti

<div>We propose a new model-based testing approach which takes as input a set of requirements described in Arabic Controlled Natural Language (CNL) which is a subset of the Arabic language generated by a specific grammar. The semantics of the considered requirements is defined using the Case Grammar Theory (CTG). The requirements are translated into Transition Relations which serve as an input for test cases generation tools.</div>


Author(s):  
ALIREZA SADEGHI ◽  
SEYED-HASSAN MIRIAN-HOSSEINABADI

Test Driven Development (TDD), as a quality promotion approach, suffers from some shortages that discourage its usage. One of the most challenging shortcomings of TDD is the low level of granularity and abstraction. This may lead to production of software that is not acceptable by the end users. Additionally, exploiting of TDD is not applicable in the enterprise systems development. To overcome this defect, we have merged TDD with Model Based Testing (MBT) and suggested a framework named Model Based Test Driven Development (MBTDD). According to TDD, writing test cases comes before programming, and based on our improved method of TDD, modeling precedes writing test cases. To validate the applicability of the proposed framework, we have implemented a use case of Human Resource Management (HRM) system by means of MBTDD. The empirical results of using MBTTD show that our proposed method overwhelms existing deficiencies of TDD.


Author(s):  
Aneesa Saeed ◽  
Siti Hafizah Ab Hamid ◽  
Asmiza Abdul Sani

Model-based testing (MBT) seems to be gaining interest in industry and academia due to its provision of systematic, automated and comprehensive testing. The challenge in MBT is to generate optimal test data to execute test cases. Recently, researchers have successfully applied search-based techniques (SBTs) by automating the search for an optimal set of test data at reasonable cost compared to other more expensive techniques. In real complex systems, effectiveness and cost of SBTs for MBT in industrial context are little known. The objective of this study is to empirically evaluate the cost and the effectiveness of SBTs for MBT on industrial case studies. We applied a model-driven approach and SBTs to automatically generate executable feasible test cases. The results show that the model-driven approach generated high number of infeasible test cases with less time while genetic algorithm (GA) and simulating annealing (SA) outperformed significantly random search (RS) with high generation time. We concluded that local SBTs are more appropriate to generate test data when the type of the constraints is simple. Current work on analyzing the cost and effectiveness on SBTs for MBT indicates possible enhancement using the model-driven approach to detect the infeasible paths and SBTs to achieve optimal success rate.


Author(s):  
WOLFGANG GRIESKAMP ◽  
NICOLAS KICILLOF ◽  
NIKOLAI TILLMANN

We describe action machines, a framework for encoding and composing partial behavioral descriptions. Action machines encode behavior as a variation of labeled transition systems where the labels are observable activities of the described artifact and the states capture full data models. Labels may also have structure, and both labels and states may be partial with a symbolic representation of the unknown parts. Action machines may stem from software models or programs, and can be composed in a variety of ways to synthesize new behaviors. The composition operators described here include synchronized and interleaving parallel composition, sequential composition, and alternating simulation. We use action machines in analysis processes such as model checking and model-based testing. The current main application is in the area of model-based conformance testing, where our approach addresses practical problems users at Microsoft have in applying model-based testing technology.


Sign in / Sign up

Export Citation Format

Share Document