Medical Image Enhancement Using Edge Information-Based Methods

Author(s):  
S. Anand

Medical image enhancement improves the quality and facilitates diagnosis. This chapter investigates three methods of medical image enhancement by exploiting useful edge information. Since edges have higher perceptual importance, the edge information based enhancement process is always of interest. But determination of edge information is not an easy job. The edge information is obtained from various approaches such as differential hyperbolic function, Haar filters and morphological functions. The effectively determined edge information is used for enhancement process. The retinal image enhancement method given in this chapter improves the visual quality of the vessels in the optic region. X-ray image enhancement method presented here is to increase the visibility of the bones. These algorithms are used to enhance the computer tomography, chest x-ray, retinal, and mammogram images. These images are obtained from standard datasets and experimented. The performance of these enhancement methods are quantitatively evaluated.

Biometrics ◽  
2017 ◽  
pp. 1701-1726
Author(s):  
S. Anand

Medical image enhancement improves the quality and facilitates diagnosis. This chapter investigates three methods of medical image enhancement by exploiting useful edge information. Since edges have higher perceptual importance, the edge information based enhancement process is always of interest. But determination of edge information is not an easy job. The edge information is obtained from various approaches such as differential hyperbolic function, Haar filters and morphological functions. The effectively determined edge information is used for enhancement process. The retinal image enhancement method given in this chapter improves the visual quality of the vessels in the optic region. X-ray image enhancement method presented here is to increase the visibility of the bones. These algorithms are used to enhance the computer tomography, chest x-ray, retinal, and mammogram images. These images are obtained from standard datasets and experimented. The performance of these enhancement methods are quantitatively evaluated.


2014 ◽  
Vol 543-547 ◽  
pp. 2543-2546
Author(s):  
Ai Bin Dong ◽  
Yun Feng Zhang ◽  
Yi Fang Liu

Studying of image enhancement shows that the quality of image heavily relies on human visual system. In this paper, we apply this fact to design a new image enhancement method for medical images that improves the detail regions. First, the eye region of interest (ROI) is segmented; then the Un-sharp Masking (USM) is used to enhance the detail regions. Experiments show that the proposed method can effectively improve the accuracy of medical image enhancement and has a significant effect.


2013 ◽  
Vol 411-414 ◽  
pp. 1020-1024
Author(s):  
Hua Liang ◽  
Zhen Tao Zhou ◽  
Hao Feng ◽  
Li Jun Ding ◽  
Ju Ping Gu ◽  
...  

Color medical images are widely used in the field of medical diagnosis. Image enhancement is one of the most important pretreatment methods which can enhance the quality of images. In this paper, a novel color image enhancement method using Y-H model and wavelet homomorhpic filtering is put forward. The chromaticity numbers matrix and intensity numbers matrix of color images are get using Young-Helmholtz (YH) transform. The chromaticity numbers matrix remains unchanged. Wavelet homomorphic filtering method is used to process intensity numbers matrix . The enhanced intensity numbers matrix and formerly chromaticity numbers matrix are processed by Y-H inverse transformation and disply in RGB color space. The method put forward in the paper is successfully used in color medical image enhancement. Experimental results show that the method have characteristics of nondistortion, better visual effect.


Author(s):  
Jufriadif Na'am ◽  
Julius Santony ◽  
Yuhandri Yuhandri ◽  
Sumijan Sumijan ◽  
Gunadi Widi Nurcahyo

Quality of medical image has an important role in constructing right medical diagnosis. This paper recommends a method to improve the quality of medical images by increasing the size of the image pixels. By increasing the size of pixels, the size of the objects contained therein is also greater, making it easier to observe. In this study medical images of Brain CT-Scan, Chest X-Ray and Panoramic X-Ray were processed using Line-Column Interpolation (LCI) Method. The results of the treatment are then compared to Nearest Neighbor Interpolation (NNI), Bilinear Interpolation (BLI) and Bicubic Interpolation (BCI) processing results. The experiment shows that Line-Column Interpolation Method produces a larger image with details of the objects in it are not blurred and has equal visual effects. Thus, this method is expected to be a reference material in enlarging the size of the medical image for ease in clinical analysis.<br /><br />


Sign in / Sign up

Export Citation Format

Share Document