Association Rules-Based Analysis in Multidimensional Clusters

Author(s):  
Neelu Khare ◽  
Dharmendra S. Rajput ◽  
Preethi D

Many approaches for identifying potentially interesting items exploiting commonly used techniques of multidimensional data analysis. There is a great need for designing association-rule mining algorithms that will be scalable not only with the number of records (number of rows) in a cluster but also among domain's size (number of dimensions) in a cluster to focus on the domains. Where the items belong to domain is correlated with each other in a way that the domain is clustered into classes with a maximum intra-class similarity and a minimum inter-class similarity. This property can help to significantly used to prune the search space to perform efficient association-rule mining. For finding the hidden correlation in the obtained clusters effectively without losing the important relationship in the large database clustering techniques can be followed by association rule mining to provide better evaluated clusters.

2019 ◽  
Vol 18 (03) ◽  
pp. 1950028
Author(s):  
Sheel Shalini ◽  
Kanhaiya Lal

Temporal Association Rule mining uncovers time integrated associations in a transactional database. However, in an environment where database is regularly updated, maintenance of rules is a challenging process. Earlier algorithms suggested for maintaining frequent patterns either suffered from the problem of repeated scanning or the problem of larger storage space. Therefore, this paper proposes an algorithm “Probabilistic Incremental Temporal Association Rule Mining (PITARM)” that uncovers the changed behaviour in an updated database to maintain the rules efficiently. The proposed algorithm defines two support measures to identify itemsets expected to be frequent in the successive segment in advance. It reduces unnecessary scanning of itemsets in the entire database through three-fold verification and avoids generating redundant supersets and power sets from infrequent itemsets. Implementation of pruning technique in incremental mining is a novel approach that makes it better than earlier incremental mining algorithms and consequently reduces search space to a great extent. It scans the entire database only once, thus reducing execution time. Experimental results confirm that it is an enhancement over earlier algorithms.


2014 ◽  
Vol 918 ◽  
pp. 243-245
Author(s):  
Yu Ke Chen ◽  
Tai Xiang Zhao

Most incremental mining and online mining algorithms concentrate on finding association rules or patterns consistent with entire current sets of data. Users cannot easily obtain results from only interesting portion of data. This may prevent the usage of mining from online decision support for multidimensional data. To provide adhoc, query driven, and online mining support, we first propose a relation called the multidimensional pattern relation to structurally and systematically store context and mining information for later analysis.


A Data mining is the method of extracting useful information from various repositories such as Relational Database, Transaction database, spatial database, Temporal and Time-series database, Data Warehouses, World Wide Web. Various functionalities of Data mining include Characterization and Discrimination, Classification and prediction, Association Rule Mining, Cluster analysis, Evolutionary analysis. Association Rule mining is one of the most important techniques of Data Mining, that aims at extracting interesting relationships within the data. In this paper we study various Association Rule mining algorithms, also compare them by using synthetic data sets, and we provide the results obtained from the experimental analysis


2018 ◽  
Vol 7 (4.36) ◽  
pp. 533
Author(s):  
P. Asha ◽  
T. Prem Jacob ◽  
A. Pravin

Currently, data gathering techniques have increased through which unstructured data creeps in, along with well defined data formats. Mining these data and bringing out useful patterns seems difficult. Various data mining algorithms were put forth for this purpose. The associated patterns generated by the association rule mining algorithms are large in number. Every ARM focuses on positive rule mining and very few literature has focussed on rare_itemsets_mining. The work aims at retrieving the rare itemsets that are of most interest to the user by utilizing various interestingness measures. Both positive and negative itemset mining would be focused in this work.  


Author(s):  
Anne Denton

Most data of practical relevance are structured in more complex ways than is assumed in traditional data mining algorithms, which are based on a single table. The concept of relations allows for discussing many data structures such as trees and graphs. Relational data have much generality and are of significant importance, as demonstrated by the ubiquity of relational database management systems. It is, therefore, not surprising that popular data mining techniques, such as association rule mining, have been generalized to relational data. An important aspect of the generalization process is the identification of challenges that are new to the generalized setting.


Sign in / Sign up

Export Citation Format

Share Document