evolutionary analysis
Recently Published Documents


TOTAL DOCUMENTS

1931
(FIVE YEARS 733)

H-INDEX

76
(FIVE YEARS 13)

2022 ◽  
Vol 12 ◽  
Author(s):  
Xiaokang Fu ◽  
Yonglin Yang ◽  
Meng Kang ◽  
Hengling Wei ◽  
Boying Lian ◽  
...  

The caleosin (CLO) protein family displays calcium-binding properties and plays an important role in the abiotic stress response. Here, a total of 107 CLO genes were identified in 15 plant species, while no CLO genes were detected in two green algal species. Evolutionary analysis revealed that the CLO gene family may have evolved mainly in terrestrial plants and that biological functional differentiation between species and functional expansion within species have occurred. Of these, 56 CLO genes were identified in four cotton species. Collinearity analysis showed that CLO gene family expansion mainly occurred through segmental duplication and whole-genome duplication in cotton. Sequence alignment and phylogenetic analysis showed that the CLO proteins of the four cotton species were mainly divided into two types: H-caleosins (class I) and L-caleosins (class II). Cis-acting element analysis and quantitative RT–PCR (qRT–PCR) suggested that GhCLOs might be regulated by abscisic acid (ABA) and methyl jasmonate (MeJA). Moreover, transcriptome data and qRT–PCR results revealed that GhCLO genes responded to salt and drought stresses. Under salt stress, gene-silenced plants (TRV: GhCLO06) showed obvious yellowing and wilting, higher malondialdehyde (MDA) content accumulation, and significantly lower activities of superoxide dismutase (SOD) and peroxidase (POD), indicating that GhCLO06 plays a positive regulatory role in cotton salt tolerance. In gene-silenced plants (TRV: GhCLO06), ABA-related genes (GhABF2, GhABI5, and GhNAC4) were significantly upregulated after salt stress, suggesting that the regulation of salt tolerance may be related to the ABA signaling pathway. This research provides an important reference for further understanding and analyzing the molecular regulatory mechanism of CLOs for salt tolerance.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 134
Author(s):  
Mengdi Li ◽  
Jiayu Ma ◽  
Hengzhao Liu ◽  
Mengwei Ou ◽  
Hang Ye ◽  
...  

Wall-associated kinase (WAK) and WAK-like kinase (WAKL) are receptor-like kinases (RLKs), which play important roles in signal transduction between the cell wall and the cytoplasm in plants. WAK/WAKLs have been studied in many plants, but were rarely studied in the important economic walnut tree. In this study, 27 and 14 WAK/WAKL genes were identified in Juglans regia and its wild related species Juglans mandshurica, respectively. We found tandem duplication might play a critical role in the expansion of WAK/WAKL gene family in J. regia, and most of the WAK/WAKL homologous pairs underwent purified selection during evolution. All WAK/WAKL proteins have the extracellular WAK domain and the cytoplasmic protein kinase domain, and the latter was more conserved than the former. Cis-acting elements analysis showed that WAK/WAKL might be involved in plant growth and development, plant response to abiotic stress and hormones. Gene expression pattern analysis further indicated that most WAK/WAKL genes in J. regia might play a role in the development of leaves and be involved in plant response to biotic stress. Our study provides a new perspective for the evolutionary analysis of gene families in tree species and also provides potential candidate genes for studying WAK/WAKL gene function in walnuts.


Author(s):  
Stephan E. Lehnart ◽  
Xander H.T. Wehrens

Junctophilins (JPHs) comprise a family of structural proteins that connect the plasma membrane to intracellular organelles such as the endo/sarcoplasmic reticulum. Tethering of these membrane structures results in the formation of highly organized subcellular junctions that play important signaling roles in all excitable cell types. There are four JPH isoforms, expressed primarily in muscle and neuronal cell types. Each JPH protein consists of 6 'membrane occupation and recognition nexus' (MORN) motifs, a joining region connecting these to another set of 2 MORN motifs, a putative alpha-helical region, a divergent region exhibiting low homology between JPH isoforms, and a carboxy-terminal transmembrane region anchoring into the ER/SR membrane. JPH isoforms play essential roles in developing and maintaining subcellular membrane junctions. Conversely, inherited mutations in JPH2 cause hypertrophic or dilated cardiomyopathy, while trinucleotide expansions in the JPH3 gene cause Huntington Disease-Like 2. Loss of JPH1 protein levels can cause skeletal myopathy, while loss of cardiac JPH2 levels causes heart failure and atrial fibrillation, among other disease. This review will provide a comprehensive overview of the JPH gene family, phylogeny, and evolutionary analysis of JPH genes and other MORN domain proteins. JPH biogenesis, membrane tethering, and binding partners will be discussed, as well as functional roles of JPH isoforms in excitable cells. Finally, potential roles of JPH isoform deficits in human disease pathogenesis will be reviewed.


Author(s):  
Lijun Feng ◽  
Juntao Wang ◽  
Meiqin Mao ◽  
Wei Yang ◽  
Mark Owusu Adje ◽  
...  

Abstract Ananas comosus var. bracteatus f. tricolor (GL1) is a red pineapple accession whose mostly green leaves with chimeric white leaf margins turn red in spring and autumn and during flowering. It is an important ornamental plant and ideal plant research model for anthocyanin metabolism, chimeric leaf development, and photosynthesis. Here, we generated a highly contiguous chromosome-scale genome assembly for GL1 and compared it with other 3 published pineapple assemblies (var. comosus accessions MD2 and F153, and var. bracteatus accession CB5). The GL1 assembly has a total size of ∼461 Mb, with a contig N50 of ∼2.97 Mb and Benchmarking Universal Single-Copy Ortholog score of 97.3%. More than 99% of the contigs are anchored to 25 pseudochromosomes. Compared with the other 3 published pineapple assemblies, the GL1 assembly was confirmed to be more continuous. Our evolutionary analysis showed that the Bromeliaceae and Poaceae diverged from their nearest common ancestor ∼82.36 million years ago (MYA). Population structure analysis showed that while GL1 has not undergone admixture, bracteatus accession CB5 has resulted from admixture of 3 species of Ananas. Through classification of orthogroups, analysis of genes under positive selection, and analysis of presence/absence variants, we identified a series of genes related to anthocyanin metabolism and development of chimeric leaves. The structure and evolution of these genes were compared among the published pineapple assemblies with reveal candidate genes for these traits. The GL1 genome assembly and its comparisons with other 3 pineapple genome assemblies provide a valuable resource for the genetic improvement of pineapple and serve as a model for understanding the genomic basis of important traits in different pineapple varieties and other pan-cereal crops.


2022 ◽  
Author(s):  
Megumi Tsurumaki ◽  
Motofumi Saito ◽  
Masaru Tomita ◽  
Akio Kanai

The Candidate Phyla Radiation (CPR) is a large bacterial group consisting mainly of uncultured lineages. They have small cells and small genomes, and often lack ribosomal proteins L1, L9, and/or L30, which are basically ubiquitous in ordinary (non-CPR) bacteria. Here, we comprehensively analyzed the genomic information of CPR bacteria and identified their unique properties. In the distribution of protein lengths in CPR bacteria, the peak was at around 100–150 amino acids, whereas the position of the peak varies in the range of 100–300 amino acids in free-living non-CPR bacteria, and at around 100–200 amino acids in most symbiotic non-CPR bacteria. These results show that CPR bacteria have smaller proteins on average, like symbiotic non-CPR bacteria. We found that ribosomal proteins L28, L29, L32, and L33 are also deleted in CPR bacteria, in a lineage-specific manner. Moreover, the sequences of approximately half of all ribosomal proteins in CPR differ, in part, from those of non-CPR bacteria, with missing regions or specific added region. We also found that several regions of the 16S, 23S, and 5S rRNAs are lacking in CPR bacteria and that the total predicted length of the three rRNAs in CPR bacteria is smaller than that in non-CPR bacteria. The regions missing in the CPR ribosomal proteins and rRNAs are located near the surface of the ribosome, and some are close to one another. These observations suggest that ribosomes are smaller in CPR bacteria than in free-living non-CPR bacteria, with simplified surface structures.


2022 ◽  
Vol 30 (1) ◽  
pp. 777-797
Author(s):  
Okojie Eseoghene Lorrine ◽  
Raja Noor Zaliha Raja Abd. Rahman ◽  
Joo Shun Tan ◽  
Raja Farhana Raja Khairuddin ◽  
Abu Bakar Salleh ◽  
...  

Meyerozyma guilliermondii strain SO, a newly isolated yeast species from spoilt orange, has been used as a host to express the recombinant proteins using methylotrophic yeast promoters. However, as a novel yeast expression system, the vacuolar proteases of this yeast have not been determined, which may have contributed to the low level of heterologous protein secretions. Thus, this study aimed to determine intra- and extracellular proteolytic activity and identify the putative vacuolar proteases using bioinformatics techniques. A clear zone was observed from the nutrient agar skimmed milk screening plate. Proteolytic activity of 117.30 U/ml and 75 U/ml were obtained after 72 h of cultivation for both extracellular and intracellular proteins, respectively. Next, the Hidden Markov model (HMM) was used to detect the presence of the vacuolar proteases (PEP4 and PRB1) from the strain SO proteome. Aspartyl protease (PEP4) with 97.55% identity to Meyerozyma sp. JA9 and a serine protease (PRB1) with 70.91% identity to Candida albicans were revealed. The homology with other yeast vacuolar proteases was confirmed via evolutionary analysis. PROSPER tool prediction of cleavage sites postulated that PEP4 and PRB1 might have caused proteolysis of heterologous proteins in strain SO. In conclusion, two putative vacuolar proteases (PEP4 and PRB1) were successfully identified in strain SO. Further characterization can be done to understand their specific properties, and their effects on heterologous protein expression can be conducted via genome editing.


2022 ◽  
Vol 23 (1) ◽  
pp. 530
Author(s):  
Yu Gao ◽  
Baohua Feng ◽  
Caixia Gao ◽  
Huiquan Zhang ◽  
Fengting Wen ◽  
...  

MicroRNA408 (miR408) is an ancient and highly conserved miRNA, which is involved in the regulation of plant growth, development and stress response. However, previous research results on the evolution and functional roles of miR408 and its targets are relatively scattered, and there is a lack of a systematic comparison and comprehensive summary of the detailed evolutionary pathways and regulatory mechanisms of miR408 and its targets in plants. Here, we analyzed the evolutionary pathway of miR408 in plants, and summarized the functions of miR408 and its targets in regulating plant growth and development and plant responses to various abiotic and biotic stresses. The evolutionary analysis shows that miR408 is an ancient and highly conserved microRNA, which is widely distributed in different plants. miR408 regulates the growth and development of different plants by down-regulating its targets, encoding blue copper (Cu) proteins, and by transporting Cu to plastocyanin (PC), which affects photosynthesis and ultimately promotes grain yield. In addition, miR408 improves tolerance to stress by down-regulating target genes and enhancing cellular antioxidants, thereby increasing the antioxidant capacity of plants. This review expands and promotes an in-depth understanding of the evolutionary and regulatory roles of miR408 and its targets in plants.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12733
Author(s):  
Meijun Ji ◽  
Kangtai Sun ◽  
Hui Fang ◽  
Zhimin Zhuang ◽  
Haodong Chen ◽  
...  

Background Cytoplasmic linker–associated proteins (CLASPs) are tubule proteins that can bind to microtubules and participate in regulating the structure and function of microtubules, which significantly affects the development and growth of plants. These proteins have been identified in Arabidopsis; however, little research has been performed in upland cotton. Methods In this study, the whole genome of the CLASP_N family was analyzed to provide theoretical support for the function of this gene family in the development of upland cotton fiber. Bioinformatics was used to analyze the family characteristics of CLASP_N in upland cotton, such as member identification, sequence characteristics, conserved domain structure and coevolutionary relationships. Real-time fluorescent quantitative PCR (qRT-PCR) was used to clarify the expression pattern of the upland cotton CLASP_N gene family in cotton fiber. Results At the genome-wide level, we identified 16 upland cotton CLASP_N genes. A chromosomal localization analysis revealed that these 16 genes were located on 13 chromosomes. The motif results showed that all CLASP_N proteins have the CLASP_N domain. Gene structure analysis showed that the structure and length of exons and introns were consistent in the subgroups. In the evolutionary analysis with other species, the gene family clearly diverged from the other species in the evolutionary process. A promoter sequence analysis showed that this gene family contains a large number of cis-acting elements related to a variety of plant hormones. qRT-PCR was used to clarify the expression pattern of the upland cotton CLASP_N gene family in cotton fiber and leaves, and Gh210800 was found to be highly expressed in the later stages of fiber development. The results of this study provide a foundation for further research on the molecular role of the CLASP_N genes in cotton fiber development.


Sign in / Sign up

Export Citation Format

Share Document