Application of Data Fusion for Uncertainty and Sensitivity Analysis of Water Quality in the Shenandoah River

2019 ◽  
pp. 1383-1410
Author(s):  
Mbongowo Joseph Mbuh

This article is aimed at demonstrating the feasibility of combining water quality observations with modeling using data fusion techniques for efficient nutrients monitoring in the Shenandoah River (SR). It explores the hypothesis; “Sensitivity and uncertainty from water quality modeling and field observation can be improved through data fusion for a better prediction of water quality.” It models water quality using water quality simulation programs and combines the results with field observation, using a Kalman filter (KF). The results show that the analysis can be improved by using more observations in watersheds where minor variations to the analysis result in large differences in the subsequent forecast. Analyses also show that while data fusion was an invaluable tool to reduce uncertainty, an improvement in the temporal scales would also enhance results and reduce uncertainty. To examine how changes in the field observation affects the final KF analysis, the fusion and lab analysis cross-validation showed some improvement in the results with a very high coefficient of determination.

2018 ◽  
Vol 9 (3) ◽  
pp. 31-54
Author(s):  
Mbongowo Joseph Mbuh

This article is aimed at demonstrating the feasibility of combining water quality observations with modeling using data fusion techniques for efficient nutrients monitoring in the Shenandoah River (SR). It explores the hypothesis; “Sensitivity and uncertainty from water quality modeling and field observation can be improved through data fusion for a better prediction of water quality.” It models water quality using water quality simulation programs and combines the results with field observation, using a Kalman filter (KF). The results show that the analysis can be improved by using more observations in watersheds where minor variations to the analysis result in large differences in the subsequent forecast. Analyses also show that while data fusion was an invaluable tool to reduce uncertainty, an improvement in the temporal scales would also enhance results and reduce uncertainty. To examine how changes in the field observation affects the final KF analysis, the fusion and lab analysis cross-validation showed some improvement in the results with a very high coefficient of determination.


2014 ◽  
Vol 42 (11) ◽  
pp. 1573-1582 ◽  
Author(s):  
Meltem Kaçıkoç ◽  
Mehmet Beyhan

1998 ◽  
Vol 38 (10) ◽  
pp. 165-172 ◽  
Author(s):  
Ruochuan Gu ◽  
Mei Dong

The conventional method for waste load allocations (WLA) employs spatial-differentiation, considering individual point sources, and temporal-integration, using a constant flow, typically 7Q10 low flow. This paper presents a watershed-based seasonal management approach, in which non-point source as well as point sources are incorporated, seasonal design flows are used for water quality analysis, and WLA are performend in a watershed scale. The strategy for surface water quality modeling in the watershed-based approach is described. The concept of seasonal discharge management is discussed and suggested for the watershed-based approach. A case study using the method for the Des Moines River, Iowa, USA is conducted. Modeling considerations and procedure are presented. The significance of non-point source pollutant load and its impact on water quality of the river is evaluated by analyzing field data. A water quality model is selected and validated against field measurements. The model is applied to projections of future water quality situations under different watershed management and water quality control scenarios with respect to river flow and pollutant loading rate.


Sign in / Sign up

Export Citation Format

Share Document