Summarization in Pattern Mining

Author(s):  
Mohammad Al Hasan

The research on mining interesting patterns from transactions or scientific datasets has matured over the last two decades. At present, numerous algorithms exist to mine patterns of variable complexities, such as set, sequence, tree, graph, etc. Collectively, they are referred as Frequent Pattern Mining (FPM) algorithms. FPM is useful in most of the prominent knowledge discovery tasks, like classification, clustering, outlier detection, etc. They can be further used, in database tasks, like indexing and hashing while storing a large collection of patterns. But, the usage of FPM in real-life knowledge discovery systems is considerably low in comparison to their potential. The prime reason is the lack of interpretability caused from the enormity of the output-set size. For instance, a moderate size graph dataset with merely thousand graphs can produce millions of frequent graph patterns with a reasonable support value. This is expected due to the combinatorial search space of pattern mining. However, classification, clustering, and other similar Knowledge discovery tasks should not use that many patterns as their knowledge nuggets (features), as it would increase the time and memory complexity of the system. Moreover, it can cause a deterioration of the task quality because of the popular “curse of dimensionality” effect. So, in recent years, researchers felt the need to summarize the output set of FPM algorithms, so that the summary-set is small, non-redundant and discriminative. There are different summarization techniques: lossless, profile-based, cluster-based, statistical, etc. In this article, we like to overview the main concept of these summarization techniques, with a comparative discussion of their strength, weakness, applicability and computation cost.

Author(s):  
Unil Yun ◽  
Eunchul Yoon

Based on the frequent pattern mining, closed frequent pattern mining and weighted frequent pattern mining have been studied to reduce the search space and discover important patterns. In the previous definition of weighted closed patterns, supports of patterns are only considered to compute the closures of the patterns. It means that the closures of weighted frequent patterns cannot be perfectly checked. Moreover, the usefulness of weighted closed frequent patterns depends on the presence of frequent patterns that have supersets with the exactly same weighted support. However, from the errors such as noise, slight changes in items' supports or weights by them have significantly negative effects on the mining results, which may prevent us from obtaining exact and valid analysis results since the errors can break the original characteristics of items and patterns. In this paper, to solve the above problems, we propose a concept of robust weighted closed frequent pattern mining, and an approximate bound is defined on the basis of the concept, which can relax requirements for precise equality among patterns' weighted supports. Thereafter, we propose a weighted approximate closed frequent pattern mining algorithm which not only considers the two approaches but also suggests fault tolerant pattern mining in the noise constraints. To efficiently mine weighted approximate closed frequent patterns, we suggest pruning and subset checking methods which reduce search space. We also report extensive performance study to demonstrate the effectiveness, efficiency, memory usage, scalability, and quality of patterns in our algorithm.


Information sharing among the associations is a general development in a couple of zones like business headway and exhibiting. As bit of the touchy principles that ought to be kept private may be uncovered and such disclosure of delicate examples may impacts the advantages of the association that have the data. Subsequently the standards which are delicate must be secured before sharing the data. In this paper to give secure information sharing delicate guidelines are bothered first which was found by incessant example tree. Here touchy arrangement of principles are bothered by substitution. This kind of substitution diminishes the hazard and increment the utility of the dataset when contrasted with different techniques. Examination is done on certifiable dataset. Results shows that proposed work is better as appear differently in relation to various past strategies on the introduce of evaluation parameters.


2011 ◽  
Vol 22 (8) ◽  
pp. 1749-1760
Author(s):  
Yu-Hong GUO ◽  
Yun-Hai TONG ◽  
Shi-Wei TANG ◽  
Leng-Dong WU

Sign in / Sign up

Export Citation Format

Share Document