Multimedia Data Mining Trends and Challenges

Author(s):  
Janusz Swierzowicz

The development of information technology is particularly noticeable in the methods and techniques of data acquisition. Data can be stored in many forms of digital media, for example, still images taken by a digital camera, MP3 songs, or MPEG videos from desktops, cell phones, or video cameras. Data volumes are growing at different speeds with the fastest Internet and multimedia resource growth. In these fast growing volumes of digital data environments, restrictions are connected with a human’s low data complexity and dimensionality analysis. The article begins with a short introduction to data mining, considering different kinds of data, both structured as well as semistructured and unstructured. It emphasizes the special role of multimedia data mining. Then, it presents a short overview of data mining goals, methods, and techniques used in multimedia data mining. This section focuses on a brief discussion on supervised and unsupervised classification, uncovering interesting rules, decision trees, artificial neural networks, and rough-neural computing. The next section presents advantages offered by multimedia data mining and examples of practical and successful applications. It also contains a list of application domains. The following section describes multimedia data mining critical issues, summarizes main multimedia data mining advantages and disadvantages, and considers some predictive trends.

2008 ◽  
pp. 3611-3620
Author(s):  
Janusz Swierzowicz

The development of information technology is particularly noticeable in the methods and techniques of data acquisition, high-performance computing, and bandwidth frequency. According to a newly observed phenomenon, called a storage low (Fayyad & Uthurusamy, 2002), the capacity of digital data storage is doubled every 9 months with respect to the price. Data can be stored in many forms of digital media, for example, still images taken by a digital camera, MP3 songs, or MPEG videos from desktops, cell phones, or video cameras. Such data exceeds the total cumulative handwriting and printing during all of recorded human history (Fayyad, 2001). According to current analysis carried out by IBM Almaden Research (Swierzowicz, 2002), data volumes are growing at different speeds. The fastest one is Internet-resource growth: It will achieve the digital online threshold of exabytes within a few years (Liautaud, 2001). In these fast-growing volumes of data environments, restrictions are connected with a human’s low data-complexity and dimensionality analysis. Investigations on combining different media data, multimedia, into one application have begun as early as the 1960s, when text and images were combined in a document. During the research and development process, audio, video, and animation were synchronized using a time line to specify when they should be played (Rowe & Jain, 2004). Since the middle 1990s, the problems of multimedia data capture, storage, transmission, and presentation have extensively been investigated. Over the past few years, research on multimedia standards (e.g., MPEG-4, X3D, MPEG-7) has continued to grow. These standards are adapted to represent very complex multimedia data sets; can transparently handle sound, images, videos, and 3-D (three-dimensional) objects combined with events, synchronization, and scripting languages; and can describe the content of any multimedia object. Different algorithms need to be used in multimedia distribution and multimedia database applications. An example is an image database that stores pictures of birds and a sound database that stores recordings of birds (Kossmann, 2000). The distributed query that asks for “top ten different kinds of birds that have black feathers and a high voice” is described there by Kossmann (2000, p.436).


Author(s):  
Janusz Swierzowicz

The development of information technology is particularly noticeable in the methods and techniques of data acquisition, high-performance computing, and bandwidth frequency. According to a newly observed phenomenon, called a storage low (Fayyad & Uthurusamy, 2002), the capacity of digital data storage is doubled every 9 months with respect to the price. Data can be stored in many forms of digital media, for example, still images taken by a digital camera, MP3 songs, or MPEG videos from desktops, cell phones, or video cameras. Such data exceeds the total cumulative handwriting and printing during all of recorded human history (Fayyad, 2001). According to current analysis carried out by IBM Almaden Research (Swierzowicz, 2002), data volumes are growing at different speeds. The fastest one is Internet-resource growth: It will achieve the digital online threshold of exabytes within a few years (Liautaud, 2001). In these fast-growing volumes of data environments, restrictions are connected with a human’s low data-complexity and dimensionality analysis. Investigations on combining different media data, multimedia, into one application have begun as early as the 1960s, when text and images were combined in a document. During the research and development process, audio, video, and animation were synchronized using a time line to specify when they should be played (Rowe & Jain, 2004). Since the middle 1990s, the problems of multimedia data capture, storage, transmission, and presentation have extensively been investigated. Over the past few years, research on multimedia standards (e.g., MPEG-4, X3D, MPEG-7) has continued to grow. These standards are adapted to represent very complex multimedia data sets; can transparently handle sound, images, videos, and 3-D (three-dimensional) objects combined with events, synchronization, and scripting languages; and can describe the content of any multimedia object. Different algorithms need to be used in multimedia distribution and multimedia database applications. An example is an image database that stores pictures of birds and a sound database that stores recordings of birds (Kossmann, 2000). The distributed query that asks for “top ten different kinds of birds that have black feathers and a high voice” is described there by Kossmann (2000, p.436).


Sign in / Sign up

Export Citation Format

Share Document