Direct Numerical Simulation of Gas-Solids Flow Based on the Immersed Boundary Method

Author(s):  
Rahul Garg ◽  
Sudheer Tenneti ◽  
Jamaludin Mohd. Yusof ◽  
Shankar Subramaniam

In this chapter, the Direct numerical simulation (DNS) of flow past particles is described. DNS is a first-principles approach for modeling interphase momentum transfer in gas-solids flows that does not require any further closure as the flow around the particles is fully resolved. In this chapter, immersed boundary method (IBM) is described where the governing Navier-Stokes equations are modeled with exact boundary conditions imposed at each particle surface using IBM and the resulting three dimensional time-dependent velocity and pressure fields are solved. Since this model has complete description of the gas-solids hydrodynamic behavior, one could extract all the Eulerian and Lagrangian statistics for validation and development of more accurate closures which could be used at coarse-grained simulations described in other chapters.

Author(s):  
Karim M. Ali ◽  
Mohamed Madbouli ◽  
Hany M. Hamouda ◽  
Amr Guaily

This work introduces an immersed boundary method for two-dimensional simulation of incompressible Navier-Stokes equations. The method uses flow field mapping on the immersed boundary and performs a contour integration to calculate immersed boundary forces. This takes into account the relative location of the immersed boundary inside the background grid elements by using inverse distance weights, and also considers the curvature of the immersed boundary edges. The governing equations of the fluid mechanics are solved using a Galerkin-Least squares finite element formulation. The model is validated against a stationary and a vertically oscillating circular cylinder in a cross flow. The results of the model show acceptable accuracy when compared to experimental and numerical results.


Author(s):  
T. X. Dinh

The immediate aim of this study is to check the accuracy of Kajishima’s method (one kind of immersed boundary method) for the direct numerical simulation (DNS) of turbulent channel flow over a complicated bed. In this paper, the simulation of three dimensional, time -dependent turbulent flows over a fixed hemisphere at the bed of an open channel is carried out. A finite different method (FDM) is applied with a staggered Cartesian mesh. The forces, the moments about the center of the hemisphere, and the distribution of pressure on the hemisphere in the plane of symmetry are calculated.


Computation ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 50
Author(s):  
Jonatas Borges ◽  
Marcos Lourenço ◽  
Elie Padilla ◽  
Christopher Micallef

The immersed boundary method has attracted considerable interest in the last few years. The method is a computational cheap alternative to represent the boundaries of a geometrically complex body, while using a cartesian mesh, by adding a force term in the momentum equation. The advantage of this is that bodies of any arbitrary shape can be added without grid restructuring, a procedure which is often time-consuming. Furthermore, multiple bodies may be simulated, and relative motion of those bodies may be accomplished at reasonable computational cost. The numerical platform in development has a parallel distributed-memory implementation to solve the Navier-Stokes equations. The Finite Volume Method is used in the spatial discretization where the diffusive terms are approximated by the central difference method. The temporal discretization is accomplished using the Adams-Bashforth method. Both temporal and spatial discretizations are second-order accurate. The Velocity-pressure coupling is done using the fractional-step method of two steps. The present work applies the immersed boundary method to simulate a Newtonian laminar flow through a three-dimensional sudden contraction. Results are compared to published literature. Flow patterns upstream and downstream of the contraction region are analysed at various Reynolds number in the range 44 ≤ R e D ≤ 993 for the large tube and 87 ≤ R e D ≤ 1956 for the small tube, considerating a contraction ratio of β = 1 . 97 . Comparison between numerical and experimental velocity profiles has shown good agreement.


Sign in / Sign up

Export Citation Format

Share Document