scholarly journals Optimization of Windspeed Prediction Using an Artificial Neural Network Compared With a Genetic Programming Model

Author(s):  
Ravinesh C. Deo ◽  
Sujan Ghimire ◽  
Nathan J. Downs ◽  
Nawin Raj

The precise prediction of windspeed is essential in order to improve and optimize wind power prediction. However, due to the sporadic and inherent complexity of weather parameters, the prediction of windspeed data using different patterns is difficult. Machine learning (ML) is a powerful tool to deal with uncertainty and has been widely discussed and applied in renewable energy forecasting. In this chapter, the authors present and compare an artificial neural network (ANN) and genetic programming (GP) model as a tool to predict windspeed of 15 locations in Queensland, Australia. After performing feature selection using neighborhood component analysis (NCA) from 11 different metrological parameters, seven of the most important predictor variables were chosen for 85 Queensland locations, 60 of which were used for training the model, 10 locations for model validation, and 15 locations for the model testing. For all 15 target sites, the testing performance of ANN was significantly superior to the GP model.

Author(s):  
Ravinesh C. Deo ◽  
Sujan Ghimire ◽  
Nathan J. Downs ◽  
Nawin Raj

The precise prediction of windspeed is essential in order to improve and optimize wind power prediction. However, due to the sporadic and inherent complexity of weather parameters, the prediction of windspeed data using different patterns is difficult. Machine learning (ML) is a powerful tool to deal with uncertainty and has been widely discussed and applied in renewable energy forecasting. In this chapter, the authors present and compare an artificial neural network (ANN) and genetic programming (GP) model as a tool to predict windspeed of 15 locations in Queensland, Australia. After performing feature selection using neighborhood component analysis (NCA) from 11 different metrological parameters, seven of the most important predictor variables were chosen for 85 Queensland locations, 60 of which were used for training the model, 10 locations for model validation, and 15 locations for the model testing. For all 15 target sites, the testing performance of ANN was significantly superior to the GP model.


Author(s):  
Pijush Samui ◽  
Dhruvan Choubisa ◽  
Akash Sharda

This chapter examines the capability of Genetic Programming (GP) and different Artificial Neural Network (ANN) (Backpropagation [BP] and Generalized Regression Neural Network [GRNN]) models for prediction of air entrainment rate (QA) of triangular sharp-crested weir. The basic principal of GP has been taken from the concept of Genetic Algorithm (GA). Discharge (Q), drop height (h), and angle in triangular sharp-crested weir (?) are considered as inputs of BP, GRNN, and GP. Coefficient of Correlation (R) has been used to assess the performance of developed GP, BP, and GRNN models. For a perfect model, the value of R should be close to one. A sensitivity analysis has been carried out to determine the effect of each input parameter. This chapter presents a comparative study between the developed BP, GRNN, and GP models.


Author(s):  
Pijush Samui ◽  
Dhruvan Choubisa ◽  
Akash Sharda

This chapter examines the capability of Genetic Programming (GP) and different Artificial Neural Network (ANN) (Backpropagation [BP] and Generalized Regression Neural Network [GRNN]) models for prediction of air entrainment rate (QA) of triangular sharp-crested weir. The basic principal of GP has been taken from the concept of Genetic Algorithm (GA). Discharge (Q), drop height (h), and angle in triangular sharp-crested weir (?) are considered as inputs of BP, GRNN, and GP. Coefficient of Correlation (R) has been used to assess the performance of developed GP, BP, and GRNN models. For a perfect model, the value of R should be close to one. A sensitivity analysis has been carried out to determine the effect of each input parameter. This chapter presents a comparative study between the developed BP, GRNN, and GP models.


2019 ◽  
Vol 12 (3) ◽  
pp. 145 ◽  
Author(s):  
Epyk Sunarno ◽  
Ramadhan Bilal Assidiq ◽  
Syechu Dwitya Nugraha ◽  
Indhana Sudiharto ◽  
Ony Asrarul Qudsi ◽  
...  

2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


Sign in / Sign up

Export Citation Format

Share Document