generalized regression neural network
Recently Published Documents


TOTAL DOCUMENTS

392
(FIVE YEARS 143)

H-INDEX

20
(FIVE YEARS 5)

Author(s):  
Diljit Dutta ◽  
Rajib Kumar Bhattacharjya

Abstract Global climate models (GCMs) developed by the numerical simulation of physical processes in the atmosphere, ocean, and land are useful tools for climate prediction studies. However, these models involve parameterizations and assumptions for the simulation of complex phenomena, which lead to random and structural errors called biases. So, the GCM outputs need to be bias-corrected with respect to observed data before applying these model outputs for future climate prediction. This study develops a statistical bias correction approach using a four-layer feedforward radial basis neural network – a generalized regression neural network (GRNN) to reduce the biases of the near-surface temperature data in the Indian mainland. The input to the network is the CNRM-CM5 model output gridded data of near-surface temperature for the period 1951–2005, and the target to the model used for bias correcting the input data is the gridded near-surface temperature developed by the Indian Meteorological Department for the same period. Results show that the trained GRNN model can improve the inherent biases of the GCM modelled output with significant accuracy, and a good correlation is seen between the test statistics of observed and bias-corrected data for both the training and testing period. The trained GRNN model developed is then used for bias correction of CNRM-CM5 modelled projected near-surface temperature for 2006–2100 corresponding to the RCP4.5 and RCP8.5 emission scenarios. It is observed that the model can adapt well to the nature of unseen future temperature data and correct the biases of future data, assuming quasi-stationarity of future temperature data for both emission scenarios. The model captures the seasonal variation in near-surface temperature over the Indian mainland, having diverse topography appreciably, and this is evident from the bias-corrected output.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 358
Author(s):  
Satish R. Jondhale ◽  
Vijay Mohan ◽  
Bharat Bhushan Sharma ◽  
Jaime Lloret ◽  
Shashikant V. Athawale

Trilateration-based target localization using received signal strength (RSS) in a wireless sensor network (WSN) generally yields inaccurate location estimates due to high fluctuations in RSS measurements in indoor environments. Improving the localization accuracy in RSS-based systems has long been the focus of a substantial amount of research. This paper proposes two range-free algorithms based on RSS measurements, namely support vector regression (SVR) and SVR + Kalman filter (KF). Unlike trilateration, the proposed SVR-based localization scheme can directly estimate target locations using field measurements without relying on the computation of distances. Unlike other state-of-the-art localization and tracking (L&T) schemes such as the generalized regression neural network (GRNN), SVR localization architecture needs only three RSS measurements to locate a mobile target. Furthermore, the SVR based localization scheme was fused with a KF in order to gain further refinement in target location estimates. Rigorous simulations were carried out to test the localization efficacy of the proposed algorithms for noisy radio frequency (RF) channels and a dynamic target motion model. Benefiting from the good generalization ability of SVR, simulation results showed that the presented SVR-based localization algorithms demonstrate superior performance compared to trilateration- and GRNN-based localization schemes in terms of indoor localization performance.


2022 ◽  
pp. 004051752110672
Author(s):  
Zebin Su ◽  
Jinkai Yang ◽  
Pengfei Li ◽  
Junfeng Jing ◽  
Huanhuan Zhang

Neural networks have been widely used in color space conversion in the digital printing process. The shallow neural network easily obtains the local optimal solution when establishing multi-dimensional nonlinear mapping. In this paper, an improved high-precision deep belief network (DBN) algorithm is proposed to achieve the color space conversion from CMYK to L*a*b*. First, the PANTONE TCX color card is used as sample data, in which the CMYK value of the color block is used as input and the L*a*b* value is used as output; then, the conversion model from CMYK to L*a*b* color space is established by using DBN. To obtain better weight and threshold, DBN is optimized by a particle swarm optimization algorithm. Experimental results show that the proposed method has the highest conversion accuracy compared with Back Propagation Neural Network, Generalized Regression Neural Network, and traditional DBN color space conversion methods. It can also adapt to the actual production demand of color management in digital printing.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
S. Kaliappan ◽  
R. Saravanakumar ◽  
Alagar Karthick ◽  
P. Marish Kumar ◽  
V. Venkatesh ◽  
...  

The building integrated semitransparent photovoltaic (BISTPV) system is an emerging technology which replaces the conventional building material envelopes and roof. The performance prediction of the BISTPV system places a vital role in the reduction of the energy consumption in the building. In this work, the artificial neural network (ANN) is used to predict the performance of this system by optimizing the important parameter of the feature selection. The Elman neural network (EN) algorithm, feed forward neural network (FN), and generalized regression neural network model (GRN) are investigated in this study. The performance metrics of the errors are analysed such as the root mean square error (RMSE), mean absolute percentage error (MAPE), and mean square root (MSE). According to the findings, the model behaves consistently at the specified time and place in the experiment. Forecasters utilizing neural network models will have better accuracy if they use techniques like EN, FFN, and GRN having the RMSE of 0.25, 0.37, and 0.45, respectively.


Author(s):  
Suan Xu ◽  
Zeyu Wu ◽  
Jing Wang ◽  
Kaixing Hong ◽  
Kaiming Hu

A dynamic generalized regression neural network model based on inverse Duhem operator is proposed to characterize the rate-dependent hysteresis in piezoelectric actuators. As hysteresis is multi-valued mapping, and traditional neural network can only model the system with one-to-one mapping. An inverse Duhem operator is proposed to extract the dynamic property of the hysteresis. Moreover, it can transform the multi-valued mapping of the hysteresis into a one-to-one mapping to suit the input of neural network. In order to compensate the effect of the hysteresis in piezoelectric actuator, the adaptive sliding mode controller with a feedforward hysteresis compensator is developed for the tracking control of the piezoelectric actuator. Experimental results demonstrate superior tracking performance, which validate the practicability and effectiveness of the presented approach.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1670
Author(s):  
Yongli Zhang

Air contamination is identified with individuals’ wellbeing and furthermore affects the sustainable development of economy and society. This paper gathered the time series data of seven meteorological conditions variables of Beijing city from 1 November 2013 to 31 October 2017 and utilized the generalized regression neural network optimized by the particle swarm optimization algorithm (PSO-GRNN) to explore seasonal disparity in the impacts of mean atmospheric humidity, maximum wind velocity, insolation duration, mean wind velocity and rain precipitation on air quality index (AQI). The results showed that in general, the most significant impacting factor on air quality in Beijing is insolation duration, mean atmospheric humidity, and maximum wind velocity. In spring and autumn, the meteorological diffusion conditions represented by insolation duration and mean atmospheric humidity had a significant effect on air quality. In summer, temperature and wind are the most significant variables influencing air quality in Beijing; the most important reason for air contamination in Beijing in winter is the increase in air humidity and the deterioration of air diffusion condition. This study investigates the seasonal effects of meteorological conditions on air contamination and suggests a new research method for air quality research. In future studies, the impacts of different variables other than meteorological conditions on air quality should be assessed.


2021 ◽  
Vol 14 (11) ◽  
pp. 7277-7290
Author(s):  
Farhan Mustafa ◽  
Lingbing Bu ◽  
Qin Wang ◽  
Na Yao ◽  
Muhammad Shahzaman ◽  
...  

Abstract. Atmospheric carbon dioxide (CO2) is the most significant greenhouse gas, and its concentration is continuously increasing, mainly as a consequence of anthropogenic activities. Accurate quantification of CO2 is critical for addressing the global challenge of climate change and for designing mitigation strategies aimed at stabilizing CO2 emissions. Satellites provide the most effective way to monitor the concentration of CO2 in the atmosphere. In this study, we utilized the concentration of the column-averaged dry-air mole fraction of CO2, i.e., XCO2 retrieved from a CO2 monitoring satellite, the Orbiting Carbon Observatory-2 (OCO-2), and the net primary productivity (NPP) provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the anthropogenic CO2 emissions using the Generalized Regression Neural Network (GRNN) over East and West Asia. OCO-2 XCO2, MODIS NPP, and the Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC) CO2 emission datasets for a period of 5 years (2015–2019) were used in this study. The annual XCO2 anomalies were calculated from the OCO-2 retrievals for each year to remove the larger background CO2 concentrations and seasonal variability. The XCO2 anomaly, NPP, and ODIAC emission datasets from 2015 to 2018 were then used to train the GRNN model, and, finally, the anthropogenic CO2 emissions were estimated for 2019 based on the NPP and XCO2 anomalies derived for the same year. The estimated and the ODIAC CO2 emissions were compared, and the results showed good agreement in terms of spatial distribution. The CO2 emissions were estimated separately over East and West Asia. In addition, correlations between the ODIAC emissions and XCO2 anomalies were also determined separately for East and West Asia, and East Asia exhibited relatively better results. The results showed that satellite-based XCO2 retrievals can be used to estimate the regional-scale anthropogenic CO2 emissions, and the accuracy of the results can be enhanced by further improvement of the GRNN model with the addition of more CO2 emission and concentration datasets.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2397
Author(s):  
Marco Pepe ◽  
Mohsen Hesami ◽  
Andrew Maxwell Phineas Jones

In vitro seed germination is a useful tool for developing a variety of biotechnologies, but cannabis has presented some challenges in uniformity and germination time, presumably due to the disinfection procedure. Disinfection and subsequent growth are influenced by many factors, such as media pH, temperature, as well as the types and levels of contaminants and disinfectants, which contribute independently and dynamically to system complexity and nonlinearity. Hence, artificial intelligence models are well suited to model and optimize this dynamic system. The current study was aimed to evaluate the effect of different types and concentrations of disinfectants (sodium hypochlorite, hydrogen peroxide) and immersion times on contamination frequency using the generalized regression neural network (GRNN), a powerful artificial neural network (ANN). The GRNN model had high prediction performance (R2 > 0.91) in both training and testing. Moreover, a genetic algorithm (GA) was subjected to the GRNN to find the optimal type and level of disinfectants and immersion time to determine the best methods for contamination reduction. According to the optimization process, 4.6% sodium hypochlorite along with 0.008% hydrogen peroxide for 16.81 min would result in the best outcomes. The results of a validation experiment demonstrated that this protocol resulted in 0% contamination as predicted, but germination rates were low and sporadic. However, using this sterilization protocol in combination with the scarification of in vitro cannabis seed (seed tip removal) resulted in 0% contamination and 100% seed germination within one week.


2021 ◽  
Vol 17 (11) ◽  
pp. 155014772110539
Author(s):  
Satish R Jondhale ◽  
Amruta S Jondhale ◽  
Pallavi S Deshpande ◽  
Jaime Lloret

Location awareness is the key to success to many location-based services applications such as indoor navigation, elderly tracking, emergency management, and so on. Trilateration-based localization using received signal strength measurements is widely used in wireless sensor network–based localization and tracking systems due to its simplicity and low computational cost. However, localization accuracy obtained with the trilateration technique is generally very poor because of fluctuating nature of received signal strength measurements. The reason behind such notorious behavior of received signal strength is dynamicity in target motion and surrounding environment. In addition, the significant localization error is induced during each iteration step during trilateration, which gets propagated in the next iterations. To address this problem, this article presents an improved trilateration-based architecture named Trilateration Centroid Generalized Regression Neural Network. The proposed Trilateration Centroid Generalized Regression Neural Network–based localization algorithm inherits the simplicity and efficiency of three concepts namely trilateration, centroid, and Generalized Regression Neural Network. The extensive simulation results indicate that the proposed Trilateration Centroid Generalized Regression Neural Network algorithm demonstrates superior localization performance as compared to trilateration, and Generalized Regression Neural Network algorithm.


Sign in / Sign up

Export Citation Format

Share Document