energy forecasting
Recently Published Documents


TOTAL DOCUMENTS

357
(FIVE YEARS 166)

H-INDEX

30
(FIVE YEARS 13)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 160
Author(s):  
Pyae-Pyae Phyo ◽  
Yung-Cheol Byun ◽  
Namje Park

Meeting the required amount of energy between supply and demand is indispensable for energy manufacturers. Accordingly, electric industries have paid attention to short-term energy forecasting to assist their management system. This paper firstly compares multiple machine learning (ML) regressors during the training process. Five best ML algorithms, such as extra trees regressor (ETR), random forest regressor (RFR), light gradient boosting machine (LGBM), gradient boosting regressor (GBR), and K neighbors regressor (KNN) are trained to build our proposed voting regressor (VR) model. Final predictions are performed using the proposed ensemble VR and compared with five selected ML benchmark models. Statistical autoregressive moving average (ARIMA) is also compared with the proposed model to reveal results. For the experiments, usage energy and weather data are gathered from four regions of Jeju Island. Error measurements, including mean absolute percentage error (MAPE), mean absolute error (MAE), and mean squared error (MSE) are computed to evaluate the forecasting performance. Our proposed model outperforms six baseline models in terms of the result comparison, giving a minimum MAPE of 0.845% on the whole test set. This improved performance shows that our approach is promising for symmetrical forecasting using time series energy data in the power system sector.


2022 ◽  
Vol 305 ◽  
pp. 117871
Author(s):  
Jonathan Dumas ◽  
Antoine Wehenkel ◽  
Damien Lanaspeze ◽  
Bertrand Cornélusse ◽  
Antonio Sutera

2022 ◽  
pp. 206-218
Author(s):  
Bhawna Dhupia ◽  
M. Usha Rani

Power demand forecasting is one of the fields which is gaining popularity for researchers. Although machine learning models are being used for prediction in various fields, they need to upgrade to increase accuracy and stability. With the rapid development of AI technology, deep learning (DL) is being recommended by many authors in their studies. The core objective of the chapter is to employ the smart meter's data for energy forecasting in the industrial sector. In this chapter, the author will be implementing popular power demand forecasting models from machine learning and compare the results of the best-fitted machine learning (ML) model with a deep learning model, long short-term memory based on RNN (LSTM-RNN). RNN model has vanishing gradient issue, which slows down the training in the early layers of the network. LSTM-RNN is the advanced model which take care of vanishing gradient problem. The performance evaluation metric to compare the superiority of the model will be R2, mean square error (MSE), root means square error (RMSE), and mean absolute error (MAE).


2021 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
Muhammad Mahboob ◽  
Muzaffar Ali ◽  
Tanzeel ur Rashid ◽  
Rabia Hassan

Energy forecasting and policy development needs a detailed evaluation of energy assets and long-term demand estimation. The demand forecast of electricity is an essential portion of energy management, particularly in the formation of electricity. It is necessary to predict electricity needs to avoid the energy deficits or a destabilization between energy demand and supply. In this article, long-range energy alternative planning (LEAP) is used for the modeling of energy and various sectors in Pakistan as a case study. The simulated model comprises three different scenarios, a strong economy, a weak economy, and a medium economy as a reference scenario. The base year is 2015 and the outlook year is 2040. Electricity demands are almost more than four times those of the outlook year, increasing from 7.71 million tons of oil equivalent (MTOE) in 2015 to 29.77 MTOE by the end of 2040.


2021 ◽  
Vol 2021 ◽  
pp. 1-2
Author(s):  
Wei-Chiang Hong ◽  
Dongxiao Niu ◽  
Yinfeng Xu ◽  
Mengjie Zhang ◽  
Pradeep Kumar Singh
Keyword(s):  


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7664
Author(s):  
Karol Bot ◽  
Samira Santos ◽  
Inoussa Laouali ◽  
Antonio Ruano ◽  
Maria da Graça Ruano

The increasing levels of energy consumption worldwide is raising issues with respect to surpassing supply limits, causing severe effects on the environment, and the exhaustion of energy resources. Buildings are one of the most relevant sectors in terms of energy consumption; as such, efficient Home or Building Management Systems are an important topic of research. This study discusses the use of ensemble techniques in order to improve the performance of artificial neural networks models used for energy forecasting in residential houses. The case study is a residential house, located in Portugal, that is equipped with PV generation and battery storage and controlled by a Home Energy Management System (HEMS). It has been shown that the ensemble forecasting results are superior to single selected models, which were already excellent. A simple procedure was proposed for selecting the models to be used in the ensemble, together with a heuristic to determine the number of models.


Sign in / Sign up

Export Citation Format

Share Document